目的:使用稀疏自编码器提取特征,使用softmax做分类器,实现手写字符识别分类。
好处:相比较前面直接使用原始像素的softmax分类器(92%识别率),能够提升分类器的识别率,达到98%以上。
体会:通过自学习提取特征,能够模仿人类的大脑完成特征的抽象提取。而且是自动提取过程,对于海量数据,将有非常大的优势。
UFLDL学习链接:UFLDL,感谢吴恩达同学
说明:在实现这一节之前一定要先完成稀疏自编码器,softmax回归这两节,因为这一节的许多代码都是借用这两节的。
这里给出Andrew ng的代码以及自己的代码(YOUR CODE HERE 部分),并附上详细的说明分析
%% CS294A/CS294W Self-taught Learning Exercise % Instructions % ------------ % % This file contains code that helps you get started on the % self-taught learning. You will need to complete code in feedForwardAutoencoder.m % You will also need to have implemented sparseAutoencoderCost.m and % softmaxCost.m from previous exercises. % %% ====================================================================== % STEP 0: Here we provide the relevant parameters values that will % allow your sparse autoencoder to get good filters; you do not need to % change the parameters below. inputSize = 28 * 28; numLabels = 5; hiddenSize = 200; sparsityParam = 0.1; % desired average activation of the hidden units. % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p", % in the lecture notes). lambda = 3e-3; % weight decay parameter beta = 3; % weight of sparsity penalty term maxIter = 400; % 我的电脑内存在4G的情况下,设为400会内存溢出,于是我设为80 %% ====================================================================== % STEP 1: Load data from the MNIST database % % This loads our training and test data from the MNIST database files. % We have sorted the data for you in this so that you will not have to % change it. % Load MNIST database files mnistData = loadMNISTImages('mnist/train-images-idx3-ubyte'); %这里得到784×60000 的matrix mnistLabels = loadMNISTLabels('mnist/train-labels-idx1-ubyte'); % 这里得到 60000×1的matrix % Set Unlabeled Set (All Images) % Simulate a Labeled and Unlabeled set labeledSet = find(mnistLabels >= 0 & mnistLabels <= 4); % 找到0-4数字的索引 unlabeledSet = find(mnistLabels >= 5); %找到5-9数字的索引,作为无标签数据,用来训练自编码器 numTrain = round(numel(labeledSet)/2); % 计算训练集的样本数量,取0-4中一般的样本作为 % softmax的训练样本,一半的样本作为测试样本 trainSet = labeledSet(1:numTrain); % 将0-4的数字分为两组,一半用来训练Softmax分类器 testSet = labeledSet(numTrain+1:end); %一半用来做测试集。 unlabeledData = mnistData(:, unlabeledSet); %得到无标签数据矩阵 trainData = mnistData(:, trainSet); % 得到有标签训练数据集矩阵 trainLabels = mnistLabels(trainSet)' + 1; % Shift Labels to the Range 1-5,把原本的0-4的标签,变成了1-5的标签 testData = mnistData(:, testSet); %得到有标签测试数据集矩阵 testLabels = mnistLabels(testSet)' + 1; % Shift Labels to the Range 1-5,把原本的0-4的标签,变成了1-5的标签 % Output Some Statistics fprintf('# examples in unlabeled set: %d\n', size(unlabeledData, 2)); fprintf('# examples in supervised training set: %d\n\n', size(trainData, 2)); fprintf('# examples in supervised testing set: %d\n\n', size(testData, 2)); %% ====================================================================== % STEP 2: Train the sparse autoencoder % This trains the sparse autoencoder on the unlabeled training % images. % Randomly initialize the parameters theta = initializeParameters(hiddenSize, inputSize); %% ----------------- YOUR CODE HERE ---------------------- % Find opttheta by running the sparse autoencoder on % unlabeledTrainingImages opttheta = theta; % Use minFunc to minimize the function addpath minFunc/ options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost % function. Generally, for minFunc to work, you % need a function pointer with two outputs: the % function value and the gradient. In our problem, % sparseAutoencoderCost.m satisfies this. options.maxIter = maxIter; % Maximum number of iterations of L-BFGS to run options.display = 'on'; % 调用minFunc,参数列表中传入sparseAutoencoderCost的函数句柄, % 这样在函数minFunc中就可以调用该cost函数,从而不断迭代得到最优解 [opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ... inputSize, hiddenSize, ... lambda, sparsityParam, ... beta, unlabeledData), ... % 这里传入unlabeledData,用作训练的数据集 theta, options); %% ----------------------------------------------------- % Visualize weights W1 = reshape(opttheta(1:hiddenSize * inputSize), hiddenSize, inputSize); display_network(W1'); %????为什么显示w1 %%====================================================================== %% STEP 3: Extract Features from the Supervised Dataset % % You need to complete the code in feedForwardAutoencoder.m so that the % following command will extract features from the data. % 把原始的特征转换成由稀疏自编码器提取的特征 trainFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ... trainData); testFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ... testData); %%====================================================================== %% STEP 4: Train the softmax classifier softmaxModel = struct; %% ----------------- YOUR CODE HERE ---------------------- % Use softmaxTrain.m from the previous exercise to train a multi-class % classifier. % Use lambda = 1e-4 for the weight regularization for softmax % You need to compute softmaxModel using softmaxTrain on trainFeatures and % trainLabels numClasses=5; lambda=1e-4; options.maxIter = 100; featureSize=hiddenSize; % 注意这个size要改成提取出的feature的size,而不是原始的inputSize softmaxModel = softmaxTrain(featureSize, numClasses, lambda, ... trainFeatures, trainLabels, options); %% ----------------------------------------------------- %%====================================================================== %% STEP 5: Testing %% ----------------- YOUR CODE HERE ---------------------- % Compute Predictions on the test set (testFeatures) using softmaxPredict % and softmaxModel % [pred] = softmaxPredict(softmaxModel, testFeatures); %% ----------------------------------------------------- % Classification Score % 我在使用minfunc<span style="color:#FF6600;">迭代80次</span>的情况下, % 得到的识别率是 <span style="color:#FF6600;">97.404890%</span> fprintf('Test Accuracy: %f%%\n', 100*mean(pred(:) == testLabels(:))); % (note that we shift the labels by 1, so that digit 0 now corresponds to % label 1) % % Accuracy is the proportion of correctly classified images % The results for our implementation was: % % Accuracy: 98.3% % %
matlab中的使用函数
1 find(),可以返回矩阵a中满足条件的元素的索引值。
2 numel(a),返回矩阵a中的元素个数。
3 max(),上面代码中有一处用到[nop, pred] = max(theta * data); 这里max第一个返回值是参数矩阵每列的最大值,第二个返回值是参数矩阵每列最大值的行号。这里我们很方便的通过一个max函数,直接就得到了预测的结果,用的比较巧妙。