- 【华为OD技术面试真题 - 技术面】- python八股文真题题库(1)
算法大师
华为od面试python
华为OD面试真题精选专栏:华为OD面试真题精选目录:2024华为OD面试手撕代码真题目录以及八股文真题目录文章目录华为OD面试真题精选1.数据预处理流程数据预处理的主要步骤工具和库2.介绍线性回归、逻辑回归模型线性回归(LinearRegression)模型形式:关键点:逻辑回归(LogisticRegression)模型形式:关键点:参数估计与评估:3.python浅拷贝及深拷贝浅拷贝(Shal
- Python实现简单的机器学习算法
master_chenchengg
pythonpython办公效率python开发IT
Python实现简单的机器学习算法开篇:初探机器学习的奇妙之旅搭建环境:一切从安装开始必备工具箱第一步:安装Anaconda和JupyterNotebook小贴士:如何配置Python环境变量算法初体验:从零开始的Python机器学习线性回归:让数据说话数据准备:从哪里找数据编码实战:Python实现线性回归模型评估:如何判断模型好坏逻辑回归:从分类开始理论入门:什么是逻辑回归代码实现:使用skl
- 几率odds与逻辑回归
元气小地瓜
https://www.jianshu.com/p/aa73938f32ee几率odds从Odds角度理解LogisticRegression模型的参数13December20151.引言无论在学术界,还是在工业界,LogisticRegression(LR,逻辑回归)模型[1]是常用的分类模型,被用于各种分类场景和点击率预估问题等,它也是MaxEntropy(ME,最大熵)模型[2],或者说So
- 分类算法可视化方法
dundunmm
数据挖掘分类数据挖掘人工智能可视化
可视化方法可以用于帮助理解分类算法的决策边界、性能和在不同数据集上的行为。下面列举几个常见的可视化方法。1.决策边界可视化这种方法用于可视化不同分类算法在二维特征空间中如何分隔不同类别。对于理解决策树、支持向量机(SVM)、逻辑回归和k近邻(k-NN)等模型的行为非常有用。importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasets
- 【机器学习】广义线性模型(GLM)的基本概念以及广义线性模型在python中的实例(包含statsmodels和scikit-learn实现逻辑回归)
Lossya
机器学习pythonscikit-learn线性回归人工智能逻辑回归
引言GLM扩展了传统的线性回归模型,使其能够处理更复杂的数据类型和分布文章目录引言一、广义线性模型1.1定义1.2广义线性模型的组成1.2.1响应变量(ResponseVariable)1.2.2链接函数(LinkFunction)1.2.3线性预测器(LinearPredictor)1.3常见的广义线性模型1.3.1线性回归1.3.2逻辑回归1.3.3泊松回归1.4GLM的特性1.5广义线性模型
- 机器学习实战笔记5——线性判别分析
绍少阿
机器学习笔记可视化机器学习python人工智能
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
- 亦菲喊你来学机器学习(20) --PCA数据降维
方世恩
机器学习人工智能深度学习python算法sklearn
文章目录PCA数据降维一、降维二、优缺点三、参数四、实例应用1.读取文件2.分离特征和目标变量3.使用PCA进行降维4.打印特征所占百分比和具体比例5.PCA降维后的数据6.划分数据集7.训练逻辑回归模型8.评估模型性能总结PCA数据降维主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的数据降维技术,它可以在保留数据集中最重要的特征的同时,减少数据的维度。PCA
- R语言多项逻辑回归-因变量是无序多分类
医学和生信笔记
医学统计学r语言医学统计学
因变量是无序多分类资料(>2)时,可使用多分类逻辑回归(multinomiallogisticregression)。使用课本例16-5的数据,课本电子版及数据已上传到QQ群,自行下载即可。某研究人员欲了解不同社区和性别之间居民获取健康知识的途径是否相同,对2个社区的314名成人进行了调查,其中X1是社区,社区1用0表示,社区2用1表示;X2是性别,0是男,1是女,Y是获取健康知识途径,1是传统大
- 备战2024数学建模国赛(模型三十):遗传算法 优秀案例(三) 变循环发动机部件法建模及优化
2024年数学建模国赛
备战2024数学建模国赛2024数学建模(不代写论文请勿盲目订阅)数学建模2024年数学建模国赛备战数学建模国赛算法遗传算法2024
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- R实现线性回归逻辑回归
weixin_55475210
r语言线性回归逻辑回归
线性回归基本模型Y=β0+β1X1+β2X2+⋯+βmXm+ϵY=\beta_0+\beta_1X_1+\beta_2X_2+\cdots+\beta_mX_m+\epsilonY=β0+β1X1+β2X2+⋯+βmXm+ϵYYY为因变量X1,X2,…,XmX_1,X_2,\ldots,X_mX1,X2,…,Xm为m个自变量ϵ\epsilonϵ为残差lm()函数用于完成多元线性回归系数估计,回归系
- 备战2024数学建模国赛(模型十五):模糊综合评价 优秀案例(一)确定汽车装配顺序问题的算法
2024年数学建模国赛
备战2024数学建模国赛2024数学建模(持续更新耐心等待)数学建模汽车算法2024数学建模国赛备战2024数学建模国赛模糊综合评价模型
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 备战2024数学建模国赛(模型十九):排队论 优秀案例(一)火车票购票网站优化
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模2024年数学建模国赛2024数学建模国赛马尔科夫模型排队论
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 备战2024数学建模国赛(模型二十五):微分方程 优秀案例(一)基于非稳态导热的高温作业专用服装设计
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模人工智能备战2024数学建模国赛深度学习数学建模国赛2024
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 备战2024数学建模国赛(模型四):动态规划优秀案例(一)基于蒙特卡洛模拟的眼科病床安排排队模型
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模动态规划算法20242024年数学建模国赛备战数学建模竞赛matlab
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 推荐Rerank二次重排序算法
陈敬雷-充电了么-CEO兼CTO
算法人工智能hadoop机器学习人工智能大数据数据挖掘编程语言
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】推荐Rerank二次重排序算法前言推荐的Rerank排序有两种情况,一个是离线计算的时候为每个用户提前用Rerank排序算法算好推荐结果,另一个是在实时在线Web推荐引擎里做二次融合排序的时候。但不管哪一种用到的算法是一样的。比如用逻辑回归、随机森
- python logistic regression_机器学习算法与Python实践之逻辑回归(Logistic Regression)
weixin_39702649
pythonlogisticregression
机器学习算法与Python实践这个系列主要是参考下载地址:https://bbs.pinggu.org/thread-2256090-1-1.html一、逻辑回归(LogisticRegression)Logisticregression(逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性。之前在经典之作《数学之美》中也看到了它用于广告预测,也就是根据某广告被用户点击的可能性,把
- Logistic分类算法原理及Python实践
doublexiao79
数据分析与挖掘分类python数据挖掘
一、Logistic分类算法原理Logistic分类算法,也称为逻辑回归(LogisticRegression),是机器学习中的一种经典分类算法,主要用于解决二分类问题。其原理基于线性回归和逻辑函数(Sigmoid函数)的组合,能够将输入特征的线性组合映射到一个概率范围内,从而进行分类预测。以下是Logistic分类算法的主要原理:1.线性组合首先,对于输入的n个特征,我们将其表示为一个n维的列向
- python logistic模型_Python实践之逻辑回归(Logistic Regression)
weixin_39922394
pythonlogistic模型
机器学习算法与Python实践这个系列主要是参考《机器学习实战》这本书。因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法。恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了。这节学习的是逻辑回归(LogisticRegression),也算进入了比较正统的机器学习算法。啥叫正统呢?我概念里面机器学习算法一般是这样一个
- 备战2024数学建模国赛(模型十八):拟合模型 优秀案例(二)高温作业服设计
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模2024年数学建模国赛数学建模国赛算法拟合模型
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 备战2024数学建模国赛(模型六):多元回归 优秀案例(一)颜色与物质浓度的辨识问题
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模多元回归2024数学建模国赛2024matlab备战数学建模国赛国赛思路代码
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 深度学习100问13:什么是二分类问题
不断持续学习ing
人工智能机器学习自然语言处理
嘿,你知道二分类问题不?这就像是一个“超级裁判”,要把东西分成两大类。一、定义及举例想象一下,生活中有很多时候我们得决定一个东西到底属于哪一边。就像判断一封邮件,是“垃圾邮件”呢,还是“正常邮件”;或者看看一个病人,是“得了某种病”呢,还是“没得病”。二、解决方法要解决二分类问题呀,我们可以找来一些“魔法工具”,也就是机器学习算法。像逻辑回归啦、支持向量机啦、决策树啦等等。这些算法就像聪明的小助手
- 机器学习算法深度总结(5)-逻辑回归
婉妃
1.模型定义逻辑回归属于基于概率分类的学习法.基于概率的模式识别是指对模式x所对应的类别y的后验概率禁行学习.其所属类别为后验概率最大时的类别:预测类别的后验概率,可理解为模式x所属类别y的可信度.逻辑回归(logistic),使用线性对数函数对分类后验概率进行模型化:上式,分母是满足概率总和为1的约束条件的正则化项,参数向量维数为:考虑二分类问题:使用上述关系式,logistic模型的参数个数从
- 【ShuQiHere】从零开始实现逻辑回归:深入理解反向传播与梯度下降
ShuQiHere
代码武士的机器学习秘传逻辑回归算法机器学习
【ShuQiHere】逻辑回归是机器学习中一个经典的分类算法,尽管它的名字中带有“回归”,但它的主要用途是处理二分类问题。逻辑回归通过一个逻辑函数(Sigmoid函数)将输入特征映射到一个概率值上,然后根据这个概率值进行分类。本文将带你从零开始一步步实现逻辑回归,并深入探讨背后的核心算法——反向传播与梯度下降。逻辑回归的数学基础逻辑回归的目标是找到一个逻辑函数,能够将输入特征映射到一个(0,1)之
- 【ShuQiHere】《机器学习的进化史『下』:从神经网络到深度学习的飞跃》
ShuQiHere
机器学习深度学习神经网络
【ShuQiHere】引言:神经网络与深度学习的兴起在上篇文章中,我们回顾了机器学习的起源与传统模型的发展历程,如线性回归、逻辑回归和支持向量机(SVM)。然而,随着数据规模的急剧增长和计算能力的提升,传统模型在处理复杂问题时显得力不从心。在这种背景下,神经网络重新进入了研究者们的视野,并逐步演变为深度学习,成为解决复杂问题的强大工具。今天,我们将进一步探索从神经网络到深度学习的进化历程,揭示这些
- 机器学习(ML)算法分类
活蹦乱跳酸菜鱼
机器学习
机器学习(ML)算法是一个广泛而多样的领域,涵盖了多种用于数据分析和模式识别的技术。以下是一些常见的机器学习算法分类及其具体算法:一、监督学习算法监督学习算法使用标记(即已知结果)的训练数据来训练模型,以便对新数据进行预测。线性回归:用于建立连续变量之间的关系,通过拟合一条直线或超平面来预测新数据的输出值。逻辑回归:虽然名称中包含“回归”,但实际上是用于分类问题,特别是二分类问题。通过将线性回归模
- 机器学习——逻辑回归
wsdswzj
机器学习逻辑回归人工智能
目录一、逻辑回归1.1、模型原理1.2、损失函数二、实例2.1、定义sigmoid函数2.2、数据集2.3、梯度上升算法2.4、预测函数2.5、绘画函数三、代码运行结果:四、总结优点:缺点:一、逻辑回归逻辑回归是一种广义的线性回归分析模型,用于解决二分类或多分类问题。逻辑回归模型,尽管名字中包含“回归”二字,实际上是一种分类方法,特别是用于处理二分类问题。它通过将线性回归的结果通过某种函数映射到(
- 机器学习中的逻辑回归
极客李华
机器学习机器学习逻辑回归人工智能
机器学习中的逻辑回归简介逻辑回归是机器学习领域中一种用于二分类问题的常用算法。尽管其名字中包含"回归"一词,但实际上,逻辑回归是一种分类算法,用于估计输入特征与某个事件发生的概率之间的关系。本文将深入讲解逻辑回归的原理、实际应用以及使用Python进行实现的代码。逻辑回归的基本原理逻辑回归的目标是建立一个能够预测输出为二分类标签的模型。它采用逻辑函数(也称为sigmoid函数)将线性组合的特征映射
- matlab实现梯度下降优化算法
孺子牛 for world
matlab算法开发语言
梯度下降(GradientDescent)是一种常用的优化算法,用于寻找函数的局部最小值。在机器学习领域,它常被用来优化模型的参数,比如线性回归、逻辑回归以及神经网络等模型的权重和偏置。以下是一个简单的MATLAB实现梯度下降算法的示例,该示例将用于优化一个简单的二次函数f(x)=ax2+bx+c的最小值点。为了简化问题,我们假设a=1,b=0,c=1,即函数为f(x)=x2+1,其最小值点为x=
- python库——sklearn的关键组件和参数设置
零 度°
pythonpythonsklearn
文章目录模型构建线性回归逻辑回归决策树分类器随机森林支持向量机K-近邻模型评估交叉验证性能指标特征工程主成分分析标准化和归一化scikit-learn,简称sklearn,是Python中一个广泛使用的机器学习库,它建立在NumPy、SciPy和Matplotlib这些科学计算库之上。sklearn提供了简单而有效的工具来进行数据挖掘和数据分析。我们将介绍sklearn中一些关键组件的参数设置。模
- 四十一、【人工智能】【机器学习】- Bayesian Logistic Regression算法模型
暴躁的大熊
人工智能人工智能机器学习算法
系列文章目录第一章【机器学习】初识机器学习第二章【机器学习】【监督学习】-逻辑回归算法(LogisticRegression)第三章【机器学习】【监督学习】-支持向量机(SVM)第四章【机器学习】【监督学习】-K-近邻算法(K-NN)第五章【机器学习】【监督学习】-决策树(DecisionTrees)第六章【机器学习】【监督学习】-梯度提升机(GradientBoostingMachine,GBM
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache