Morris 遍历,使用无堆栈,O(1) 空间进行二叉树遍历。它的原理很简单,利用所有叶子结点的右指针,指向其后继结点,组成一个环,在第二次遍历到这个结点时,由于其左子树已经遍历完了,则访问该结点。
算法伪码:
MorrisInOrder():
while 没有结束
如果当前节点没有左后代
访问该节点
转向右节点
否则
找到左后代的最右节点,且使最右节点的右指针指向当前节点
转向左后代节点
C++实现:
void bst_morris_inorder(struct bst_node *root) {
struct bst_node *p = root, *tmp;
while (p) {
if (p->left == NULL) {
printf("%d ", p->key);
p = p->right;
}
else {
tmp = p->left;
while (tmp->right != NULL && tmp->right != p)
tmp = tmp->right;
if (tmp->right == NULL) {
tmp->right = p;
p = p->left;
}
else {
printf("%d ", p->key);
tmp->right = NULL;
p = p->right;
}
}
}
}
java 实现:
public class MorrisTree { public static void main(String[] args) { Tree t = new Tree(); t = t.make(); t.printTree(); } } class Tree{ private Node root; private class Node{ private String value; private Node left, right; public Node(String value, Node left, Node right) { this.value = value; this.left = left; this.right = right; } } public Tree make() { Tree t = new Tree(); t.root = new Node("F", null, null); t.root.left = new Node("B", new Node("A", null, null), new Node("D", new Node("C", null, null), new Node("E", null, null))); t.root.right = new Node("G", null, new Node("I", new Node("H", null, null), null)); return t; } void printTree() { Tree t = make(); System.out.println("普通中序遍历结果:"); middleOrder(t.root); System.out.println(); System.out.println("Morris中序遍历结果:"); morris_inorder(t.root); //middleOrder(t.root); } private void middleOrder(Node root) { if(root.left != null) middleOrder(root.left); System.out.print(root.value + " "); if(root.right != null) middleOrder(root.right); } public void morris_inorder(Node root) { while(root != null) { if(root.left != null) { Node temp = root.left; while(temp.right != null && temp.right != root) { temp = temp.right; } if(temp.right == null) { temp.right = root; root = root.left; } else { System.out.print(root.value + " "); temp.right = null; root = root.right; } } else { System.out.print(root.value + " "); root = root.right; } } } }