libevent基本结构的分析

结构体event 和event_base是libevent的两个重要数据结构;

具体意思见英文解释:

/** Structure to define the backend of a given event_base. */
struct eventop {
	/** The name of this backend. */
	const char *name;
	/** Function to set up an event_base to use this backend.  It should
	 * create a new structure holding whatever information is needed to
	 * run the backend, and return it.  The returned pointer will get
	 * stored by event_init into the event_base.evbase field.  On failure,
	 * this function should return NULL. */
	void *(*init)(struct event_base *);
	/** Enable reading/writing on a given fd or signal.  'events' will be
	 * the events that we're trying to enable: one or more of EV_READ,
	 * EV_WRITE, EV_SIGNAL, and EV_ET.  'old' will be those events that
	 * were enabled on this fd previously.  'fdinfo' will be a structure
	 * associated with the fd by the evmap; its size is defined by the
	 * fdinfo field below.  It will be set to 0 the first time the fd is
	 * added.  The function should return 0 on success and -1 on error.
	 */
	int (*add)(struct event_base *, evutil_socket_t fd, short old, short events, void *fdinfo);
	/** As "add", except 'events' contains the events we mean to disable. */
	int (*del)(struct event_base *, evutil_socket_t fd, short old, short events, void *fdinfo);
	/** Function to implement the core of an event loop.  It must see which
	    added events are ready, and cause event_active to be called for each
	    active event (usually via event_io_active or such).  It should
	    return 0 on success and -1 on error.
	 */
	int (*dispatch)(struct event_base *, struct timeval *);
	/** Function to clean up and free our data from the event_base. */
	void (*dealloc)(struct event_base *);
	/** Flag: set if we need to reinitialize the event base after we fork.
	 */
	int need_reinit;
	/** Bit-array of supported event_method_features that this backend can
	 * provide. */
	enum event_method_feature features;
	/** Length of the extra information we should record for each fd that
	    has one or more active events.  This information is recorded
	    as part of the evmap entry for each fd, and passed as an argument
	    to the add and del functions above.
	 */
	size_t fdinfo_len;
};


struct event_base {
	/** Function pointers and other data to describe this event_base's
	 * backend. */
	const struct eventop *evsel;
	/** Pointer to backend-specific data. */
	void *evbase;

	/** List of changes to tell backend about at next dispatch.  Only used
	 * by the O(1) backends. */
	struct event_changelist changelist;

	/** Function pointers used to describe the backend that this event_base
	 * uses for signals */
	const struct eventop *evsigsel;
	/** Data to implement the common signal handelr code. */
	struct evsig_info sig;

	/** Number of virtual events */
	int virtual_event_count;
	/** Maximum number of virtual events active */
	int virtual_event_count_max;
	/** Number of total events added to this event_base */
	int event_count;
	/** Maximum number of total events added to this event_base */
	int event_count_max;
	/** Number of total events active in this event_base */
	int event_count_active;
	/** Maximum number of total events active in this event_base */
	int event_count_active_max;

	/** Set if we should terminate the loop once we're done processing
	 * events. */
	int event_gotterm;
	/** Set if we should terminate the loop immediately */
	int event_break;
	/** Set if we should start a new instance of the loop immediately. */
	int event_continue;

	/** The currently running priority of events */
	int event_running_priority;

	/** Set if we're running the event_base_loop function, to prevent
	 * reentrant invocation. */
	int running_loop;

	/** Set to the number of deferred_cbs we've made 'active' in the
	 * loop.  This is a hack to prevent starvation; it would be smarter
	 * to just use event_config_set_max_dispatch_interval's max_callbacks
	 * feature */
	int n_deferreds_queued;

	/* Active event management. */
	/** An array of nactivequeues queues for active event_callbacks (ones
	 * that have triggered, and whose callbacks need to be called).  Low
	 * priority numbers are more important, and stall higher ones.
	 */
	struct evcallback_list *activequeues;
	/** The length of the activequeues array */
	int nactivequeues;
	/** A list of event_callbacks that should become active the next time
	 * we process events, but not this time. */
	struct evcallback_list active_later_queue;

	/* common timeout logic */

	/** An array of common_timeout_list* for all of the common timeout
	 * values we know. */
	struct common_timeout_list **common_timeout_queues;
	/** The number of entries used in common_timeout_queues */
	int n_common_timeouts;
	/** The total size of common_timeout_queues. */
	int n_common_timeouts_allocated;

	/** Mapping from file descriptors to enabled (added) events */
	struct event_io_map io;

	/** Mapping from signal numbers to enabled (added) events. */
	struct event_signal_map sigmap;

	/** Priority queue of events with timeouts. */
	struct min_heap timeheap;

	/** Stored timeval: used to avoid calling gettimeofday/clock_gettime
	 * too often. */
	struct timeval tv_cache;

	struct evutil_monotonic_timer monotonic_timer;

	/** Difference between internal time (maybe from clock_gettime) and
	 * gettimeofday. */
	struct timeval tv_clock_diff;
	/** Second in which we last updated tv_clock_diff, in monotonic time. */
	time_t last_updated_clock_diff;

#ifndef EVENT__DISABLE_THREAD_SUPPORT
	/* threading support */
	/** The thread currently running the event_loop for this base */
	unsigned long th_owner_id;
	/** A lock to prevent conflicting accesses to this event_base */
	void *th_base_lock;
	/** A condition that gets signalled when we're done processing an
	 * event with waiters on it. */
	void *current_event_cond;
	/** Number of threads blocking on current_event_cond. */
	int current_event_waiters;
#endif
	/** The event whose callback is executing right now */
	struct event_callback *current_event;

#ifdef _WIN32
	/** IOCP support structure, if IOCP is enabled. */
	struct event_iocp_port *iocp;
#endif

	/** Flags that this base was configured with */
	enum event_base_config_flag flags;

	struct timeval max_dispatch_time;
	int max_dispatch_callbacks;
	int limit_callbacks_after_prio;

	/* Notify main thread to wake up break, etc. */
	/** True if the base already has a pending notify, and we don't need
	 * to add any more. */
	int is_notify_pending;
	/** A socketpair used by some th_notify functions to wake up the main
	 * thread. */
	evutil_socket_t th_notify_fd[2];
	/** An event used by some th_notify functions to wake up the main
	 * thread. */
	struct event th_notify;
	/** A function used to wake up the main thread from another thread. */
	int (*th_notify_fn)(struct event_base *base);

	/** Saved seed for weak random number generator. Some backends use
	 * this to produce fairness among sockets. Protected by th_base_lock. */
	struct evutil_weakrand_state weakrand_seed;

	/** List of event_onces that have not yet fired. */
	LIST_HEAD(once_event_list, event_once) once_events;

};
struct event {
	struct event_callback ev_evcallback;

	/* for managing timeouts */
	union {
		TAILQ_ENTRY(event) ev_next_with_common_timeout;
		int min_heap_idx;
	} ev_timeout_pos;
	evutil_socket_t ev_fd;

	struct event_base *ev_base;

	union {
		/* used for io events */
		struct {
			LIST_ENTRY (event) ev_io_next;
			struct timeval ev_timeout;
		} ev_io;

		/* used by signal events */
		struct {
			LIST_ENTRY (event) ev_signal_next;
			short ev_ncalls;
			/* Allows deletes in callback */
			short *ev_pncalls;
		} ev_signal;
	} ev_;

	short ev_events;
	short ev_res;		/* result passed to event callback */
	struct timeval ev_timeout;
};

源码剖析及其分析:

struct event_base *
event_base_new_with_config(const struct event_config *cfg)
{
	int i;
	struct event_base *base;
	int should_check_environment;

#ifndef EVENT__DISABLE_DEBUG_MODE
	event_debug_mode_too_late = 1;
#endif

	if ((base = mm_calloc(1, sizeof(struct event_base))) == NULL) {
		event_warn("%s: calloc", __func__);//变参数输入 利用参数传递通过栈
		return NULL;
	}

	if (cfg)
		base->flags = cfg->flags;

	should_check_environment =
	    !(cfg && (cfg->flags & EVENT_BASE_FLAG_IGNORE_ENV));

	{
		struct timeval tmp;
		int precise_time =
		    cfg && (cfg->flags & EVENT_BASE_FLAG_PRECISE_TIMER);
		int flags;
		if (should_check_environment && !precise_time) {
			precise_time = evutil_getenv_("EVENT_PRECISE_TIMER") != NULL;
			base->flags |= EVENT_BASE_FLAG_PRECISE_TIMER;
		}
		flags = precise_time ? EV_MONOT_PRECISE : 0;
		evutil_configure_monotonic_time_(&base->monotonic_timer, flags);

		gettime(base, &tmp);
	}

	min_heap_ctor_(&base->timeheap);

	base->sig.ev_signal_pair[0] = -1;
	base->sig.ev_signal_pair[1] = -1;
	base->th_notify_fd[0] = -1;
	base->th_notify_fd[1] = -1;

	TAILQ_INIT(&base->active_later_queue);

	evmap_io_initmap_(&base->io);
	evmap_signal_initmap_(&base->sigmap);
	event_changelist_init_(&base->changelist);

	base->evbase = NULL;

	if (cfg) {
		memcpy(&base->max_dispatch_time,
		    &cfg->max_dispatch_interval, sizeof(struct timeval));
		base->limit_callbacks_after_prio =
		    cfg->limit_callbacks_after_prio;
	} else {
		base->max_dispatch_time.tv_sec = -1;
		base->limit_callbacks_after_prio = 1;
	}
	if (cfg && cfg->max_dispatch_callbacks >= 0) {
		base->max_dispatch_callbacks = cfg->max_dispatch_callbacks;
	} else {
		base->max_dispatch_callbacks = INT_MAX;
	}
	if (base->max_dispatch_callbacks == INT_MAX &&
	    base->max_dispatch_time.tv_sec == -1)
		base->limit_callbacks_after_prio = INT_MAX;

	for (i = 0; eventops[i] && !base->evbase; i++) {
		if (cfg != NULL) {
			/* determine if this backend should be avoided */
			if (event_config_is_avoided_method(cfg,
				eventops[i]->name))
				continue;
			if ((eventops[i]->features & cfg->require_features)
			    != cfg->require_features)
				continue;
		}

		/* also obey the environment variables */
		if (should_check_environment &&
		    event_is_method_disabled(eventops[i]->name))
			continue;
        //I/O demultiplex机制实例
		base->evsel = eventops[i];//hook回调函数的学习
        //初始化I/O demultiplex实例(参见win32_init)
		base->evbase = base->evsel->init(base);
	}

	if (base->evbase == NULL) {
		event_warnx("%s: no event mechanism available",
		    __func__);
		base->evsel = NULL;
		event_base_free(base);
		return NULL;
	}

	if (evutil_getenv_("EVENT_SHOW_METHOD"))
		event_msgx("libevent using: %s", base->evsel->name);
//分配1个就绪事件队列
	/* allocate a single active event queue */
	if (event_base_priority_init(base, 1) < 0) {
		event_base_free(base);
		return NULL;
	}

	/* prepare for threading */

#if !defined(EVENT__DISABLE_THREAD_SUPPORT) && !defined(EVENT__DISABLE_DEBUG_MODE)
	event_debug_created_threadable_ctx_ = 1;
#endif

#ifndef EVENT__DISABLE_THREAD_SUPPORT
	if (EVTHREAD_LOCKING_ENABLED() &&
	    (!cfg || !(cfg->flags & EVENT_BASE_FLAG_NOLOCK))) {
		int r;
		EVTHREAD_ALLOC_LOCK(base->th_base_lock, 0);
		EVTHREAD_ALLOC_COND(base->current_event_cond);
		r = evthread_make_base_notifiable(base);
		if (r<0) {
			event_warnx("%s: Unable to make base notifiable.", __func__);
			event_base_free(base);
			return NULL;
		}
	}
#endif

#ifdef _WIN32
	if (cfg && (cfg->flags & EVENT_BASE_FLAG_STARTUP_IOCP))
		event_base_start_iocp_(base, cfg->n_cpus_hint);
#endif

	return (base);
}</span>


struct event_base *
event_init(void)
{
	struct event_base *base = event_base_new_with_config(NULL);

	if (base == NULL) {
		event_errx(1, "%s: Unable to construct event_base", __func__);
		return NULL;
	}

	current_base = base;

	return (base);
}
event_add:

主要将事件ev加入到事件框架event_base的注册事件链表base->eventqueue。

/* Implementation function to add an event.  Works just like event_add,
 * except: 1) it requires that we have the lock.  2) if tv_is_absolute is set,
 * we treat tv as an absolute time, not as an interval to add to the current
 * time */
int
event_add_nolock_(struct event *ev, const struct timeval *tv,
    int tv_is_absolute)
{
	struct event_base *base = ev->ev_base;
	int res = 0;
	int notify = 0;

	EVENT_BASE_ASSERT_LOCKED(base);
	event_debug_assert_is_setup_(ev);

	event_debug((
		 "event_add: event: %p (fd "EV_SOCK_FMT"), %s%s%s%scall %p",
		 ev,
		 EV_SOCK_ARG(ev->ev_fd),
		 ev->ev_events & EV_READ ? "EV_READ " : " ",
		 ev->ev_events & EV_WRITE ? "EV_WRITE " : " ",
		 ev->ev_events & EV_CLOSED ? "EV_CLOSED " : " ",
		 tv ? "EV_TIMEOUT " : " ",
		 ev->ev_callback));

	EVUTIL_ASSERT(!(ev->ev_flags & ~EVLIST_ALL));

	if (ev->ev_flags & EVLIST_FINALIZING) {
		/* XXXX debug */
		return (-1);
	}

	/*
	 * prepare for timeout insertion further below, if we get a
	 * failure on any step, we should not change any state.
	 */
	if (tv != NULL && !(ev->ev_flags & EVLIST_TIMEOUT)) {
		if (min_heap_reserve_(&base->timeheap,
			1 + min_heap_size_(&base->timeheap)) == -1)
			return (-1);  /* ENOMEM == errno */
	}

	/* If the main thread is currently executing a signal event's
	 * callback, and we are not the main thread, then we want to wait
	 * until the callback is done before we mess with the event, or else
	 * we can race on ev_ncalls and ev_pncalls below. */
#ifndef EVENT__DISABLE_THREAD_SUPPORT
	if (base->current_event == event_to_event_callback(ev) &&
	    (ev->ev_events & EV_SIGNAL)
	    && !EVBASE_IN_THREAD(base)) {
		++base->current_event_waiters;
		EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock);
	}
#endif

	if ((ev->ev_events & (EV_READ|EV_WRITE|EV_CLOSED|EV_SIGNAL)) &&
	    !(ev->ev_flags & (EVLIST_INSERTED|EVLIST_ACTIVE|EVLIST_ACTIVE_LATER))) {
		if (ev->ev_events & (EV_READ|EV_WRITE|EV_CLOSED))
			res = evmap_io_add_(base, ev->ev_fd, ev);
		else if (ev->ev_events & EV_SIGNAL)
			res = evmap_signal_add_(base, (int)ev->ev_fd, ev);
		if (res != -1)
			event_queue_insert_inserted(base, ev);
		if (res == 1) {
			/* evmap says we need to notify the main thread. */
			notify = 1;
			res = 0;
		}
	}

	/*
	 * we should change the timeout state only if the previous event
	 * addition succeeded.
	 */
	if (res != -1 && tv != NULL) {
		struct timeval now;
		int common_timeout;
#ifdef USE_REINSERT_TIMEOUT
		int was_common;
		int old_timeout_idx;
#endif

		/*
		 * for persistent timeout events, we remember the
		 * timeout value and re-add the event.
		 *
		 * If tv_is_absolute, this was already set.
		 */
		if (ev->ev_closure == EV_CLOSURE_EVENT_PERSIST && !tv_is_absolute)
			ev->ev_io_timeout = *tv;

#ifndef USE_REINSERT_TIMEOUT
		if (ev->ev_flags & EVLIST_TIMEOUT) {
			event_queue_remove_timeout(base, ev);
		}
#endif

		/* Check if it is active due to a timeout.  Rescheduling
		 * this timeout before the callback can be executed
		 * removes it from the active list. */
		if ((ev->ev_flags & EVLIST_ACTIVE) &&
		    (ev->ev_res & EV_TIMEOUT)) {
			if (ev->ev_events & EV_SIGNAL) {
				/* See if we are just active executing
				 * this event in a loop
				 */
				if (ev->ev_ncalls && ev->ev_pncalls) {
					/* Abort loop */
					*ev->ev_pncalls = 0;
				}
			}

			event_queue_remove_active(base, event_to_event_callback(ev));
		}

		gettime(base, &now);

		common_timeout = is_common_timeout(tv, base);
#ifdef USE_REINSERT_TIMEOUT
		was_common = is_common_timeout(&ev->ev_timeout, base);
		old_timeout_idx = COMMON_TIMEOUT_IDX(&ev->ev_timeout);
#endif

		if (tv_is_absolute) {
			ev->ev_timeout = *tv;
		} else if (common_timeout) {
			struct timeval tmp = *tv;
			tmp.tv_usec &= MICROSECONDS_MASK;
			evutil_timeradd(&now, &tmp, &ev->ev_timeout);
			ev->ev_timeout.tv_usec |=
			    (tv->tv_usec & ~MICROSECONDS_MASK);
		} else {
	              evutil_timeradd(&now, tv, &ev->ev_timeout);
		}

		event_debug((
			 "event_add: event %p, timeout in %d seconds %d useconds, call %p",
			 ev, (int)tv->tv_sec, (int)tv->tv_usec, ev->ev_callback));

#ifdef USE_REINSERT_TIMEOUT
		event_queue_reinsert_timeout(base, ev, was_common, common_timeout, old_timeout_idx);
#else
		event_queue_insert_timeout(base, ev);
#endif

		if (common_timeout) {
			struct common_timeout_list *ctl =
			    get_common_timeout_list(base, &ev->ev_timeout);
			if (ev == TAILQ_FIRST(&ctl->events)) {
				common_timeout_schedule(ctl, &now, ev);
			}
		} else {
			struct event* top = NULL;
			/* See if the earliest timeout is now earlier than it
			 * was before: if so, we will need to tell the main
			 * thread to wake up earlier than it would otherwise.
			 * We double check the timeout of the top element to
			 * handle time distortions due to system suspension.
			 *//]
			if (min_heap_elt_is_top_(ev))
				notify = 1;
			else if ((top = min_heap_top_(&base->timeheap)) != NULL &&
					 evutil_timercmp(&top->ev_timeout, &now, <))
				notify = 1;
		}
	}

	/* if we are not in the right thread, we need to wake up the loop */
	if (res != -1 && notify && EVBASE_NEED_NOTIFY(base))
		evthread_notify_base(base);

	event_debug_note_add_(ev);

	return (res);
}


int
event_add(struct event *ev, const struct timeval *tv)
{
	int res;

	if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) {
		event_warnx("%s: event has no event_base set.", __func__);
		return -1;
	}

	EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock);

	res = event_add_nolock_(ev, tv, 0);

	EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock);

	return (res);
}

概要:event_del_nolock()为event_del函数的核心部分 与event_add相反

/** Helper for event_del: always called with th_base_lock held.
 *
 * "blocking" must be one of the EVENT_DEL_{BLOCK, NOBLOCK, AUTOBLOCK,
 * EVEN_IF_FINALIZING} values. See those for more information.
 */
int
event_del_nolock_(struct event *ev, int blocking)
{
	struct event_base *base;
	int res = 0, notify = 0;

	event_debug(("event_del: %p (fd "EV_SOCK_FMT"), callback %p",
		ev, EV_SOCK_ARG(ev->ev_fd), ev->ev_callback));

	/* An event without a base has not been added */
	if (ev->ev_base == NULL)
		return (-1);

	EVENT_BASE_ASSERT_LOCKED(ev->ev_base);

	if (blocking != EVENT_DEL_EVEN_IF_FINALIZING) {
		if (ev->ev_flags & EVLIST_FINALIZING) {
			/* XXXX Debug */
			return 0;
		}
	}

	/* If the main thread is currently executing this event's callback,
	 * and we are not the main thread, then we want to wait until the
	 * callback is done before we start removing the event.  That way,
	 * when this function returns, it will be safe to free the
	 * user-supplied argument. */
	base = ev->ev_base;
#ifndef EVENT__DISABLE_THREAD_SUPPORT
	if (blocking != EVENT_DEL_NOBLOCK &&
	    base->current_event == event_to_event_callback(ev) &&
	    !EVBASE_IN_THREAD(base) &&
	    (blocking == EVENT_DEL_BLOCK || !(ev->ev_events & EV_FINALIZE))) {
		++base->current_event_waiters;
		EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock);
	}
#endif

	EVUTIL_ASSERT(!(ev->ev_flags & ~EVLIST_ALL));

	/* See if we are just active executing this event in a loop */
	if (ev->ev_events & EV_SIGNAL) {
		if (ev->ev_ncalls && ev->ev_pncalls) {
			/* Abort loop */
			*ev->ev_pncalls = 0;
		}
	}

	if (ev->ev_flags & EVLIST_TIMEOUT) {
		/* NOTE: We never need to notify the main thread because of a
		 * deleted timeout event: all that could happen if we don't is
		 * that the dispatch loop might wake up too early.  But the
		 * point of notifying the main thread _is_ to wake up the
		 * dispatch loop early anyway, so we wouldn't gain anything by
		 * doing it.
		 */
		event_queue_remove_timeout(base, ev);
	}

	if (ev->ev_flags & EVLIST_ACTIVE)
		event_queue_remove_active(base, event_to_event_callback(ev));
	else if (ev->ev_flags & EVLIST_ACTIVE_LATER)
		event_queue_remove_active_later(base, event_to_event_callback(ev));

	if (ev->ev_flags & EVLIST_INSERTED) {
		event_queue_remove_inserted(base, ev);
		if (ev->ev_events & (EV_READ|EV_WRITE|EV_CLOSED))
			res = evmap_io_del_(base, ev->ev_fd, ev);
		else
			res = evmap_signal_del_(base, (int)ev->ev_fd, ev);
		if (res == 1) {
			/* evmap says we need to notify the main thread. */
			notify = 1;
			res = 0;
		}
	}

	/* if we are not in the right thread, we need to wake up the loop */
	if (res != -1 && notify && EVBASE_NEED_NOTIFY(base))
		evthread_notify_base(base);

	event_debug_note_del_(ev);

	return (res);
}
概要:该函数主要将事件ev从相应的链表上删除。
static int
event_del_(struct event *ev, int blocking)
{
	int res;

	if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) {
		event_warnx("%s: event has no event_base set.", __func__);
		return -1;
	}

	EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock);

	res = event_del_nolock_(ev, blocking);

	EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock);

	return (res);
}



你可能感兴趣的:(libevent基本结构的分析)