上一节讲的是solver的初始化,在其过程中,调用了net.cpp的init函数,下面,来看一下它是
怎么干活的。
template <typename Dtype>
void Net<Dtype>::Init(const NetParameter& in_param) {
//in_param,接solver.cpp的NetParameter
CHECK(Caffe::root_solver() || root_net_)
<< "root_net_ needs to be set for all non-root solvers";
// Set phase from the state.
phase_ = in_param.state().phase();
//phase_ = caffe::TRAIN
// Filter layers based on their include/exclude rules and
// the current NetState.
NetParameter filtered_param;
FilterNet(in_param, &filtered_param);
//这个函数的作用就是检查in_param,如果in_param的layer符合要求,就赋给filtered_param
//否则就不赋给filtered_param,你也可以认为这个函数的作用是移除in_param的指定层,将剩下
//的复制给filtered_param(这里面主要是针对included和exclude)
LOG_IF(INFO, Caffe::root_solver())
<< "Initializing net from parameters: " << std::endl
<< filtered_param.DebugString();
// Create a copy of filtered_param with splits added where necessary.
NetParameter param;
InsertSplits(filtered_param, ¶m);
//函数从filtered_param读入新网络到param
// Basically, build all the layers and set up their connections.
name_ = param.name();
map<string, int> blob_name_to_idx;
set<string> available_blobs;
//关于set容器,可以看这个网址http://blog.csdn.net/wangran51/article/details/8836160
memory_used_ = 0;
// For each layer, set up its input and output
bottom_vecs_.resize(param.layer_size());//重置bottom_vecs_的大小,一下是函数前后对比
// bottom_vecs_ = std::vector of length 0, capacity 0
// bottom_vecs_ = std::vector of length 9, capacity 9 = {
// std::vector of length 0, capacity 0, std::vector of length 0, capacity 0,
// std::vector of length 0, capacity 0, std::vector of length 0, capacity 0,
// std::vector of length 0, capacity 0, std::vector of length 0, capacity 0,
// std::vector of length 0, capacity 0, std::vector of length 0, capacity 0,
// std::vector of length 0, capacity 0}
//这里面九个元素指的是网络的train layer共有9个所以需要九个参数
top_vecs_.resize(param.layer_size());
bottom_id_vecs_.resize(param.layer_size());
param_id_vecs_.resize(param.layer_size());
top_id_vecs_.resize(param.layer_size());
bottom_need_backward_.resize(param.layer_size());
//差不多参数后面带‘_’的,代表的都是函数运行过程中的中间变量
for (int layer_id = 0; layer_id < param.layer_size(); ++layer_id) {
//对layer的每一层进行处理
// For non-root solvers, whether this layer is shared from root_net_.
bool share_from_root = !Caffe::root_solver()
&& root_net_->layers_[layer_id]->ShareInParallel();
// Inherit phase from net if unset.
if (!param.layer(layer_id).has_phase()) {
param.mutable_layer(layer_id)->set_phase(phase_);
}
// Setup layer.
const LayerParameter& layer_param = param.layer(layer_id);//看 caffe.proto去~ 赶紧的
if (layer_param.propagate_down_size() > 0) {
//propagate_down:Specifies on which bottoms the backpropagation should
//be skipped. The size must be either 0 or equal to the number of bottoms.
CHECK_EQ(layer_param.propagate_down_size(),
layer_param.bottom_size())
<< "propagate_down param must be specified "
<< "either 0 or bottom_size times ";
}
if (share_from_root) {
LOG(INFO) << "Sharing layer " << layer_param.name() << " from root net";
layers_.push_back(root_net_->layers_[layer_id]);
layers_[layer_id]->SetShared(true);
} else {
layers_.push_back(LayerRegistry<Dtype>::CreateLayer(layer_param));
创建layer并将layer_param的值赋值给layers_(具体见下篇博客)
}
layer_names_.push_back(layer_param.name());
LOG_IF(INFO, Caffe::root_solver())
<< "Creating Layer " << layer_param.name();
bool need_backward = false;
// Figure out this layer's input and output
for (int bottom_id = 0; bottom_id < layer_param.bottom_size();
++bottom_id)
//上边创建了层,然后就该对bottom/top进行处理了
{
const int blob_id = AppendBottom(param, layer_id, bottom_id,
&available_blobs, &blob_name_to_idx);
//见附1
// If a blob needs backward, this layer should provide it.
need_backward |= blob_need_backward_[blob_id];
}
int num_top = layer_param.top_size();
for (int top_id = 0; top_id < num_top; ++top_id) {
AppendTop(param, layer_id, top_id, &available_blobs, &blob_name_to_idx);
//见附2
// Collect Input layer tops as Net inputs.
if (layer_param.type() == "Input") {
const int blob_id = blobs_.size() - 1;
net_input_blob_indices_.push_back(blob_id);
net_input_blobs_.push_back(blobs_[blob_id].get());
}
}
// If the layer specifies that AutoTopBlobs() -> true and the LayerParameter
// specified fewer than the required number (as specified by
// ExactNumTopBlobs() or MinTopBlobs()), allocate them here.
Layer<Dtype>* layer = layers_[layer_id].get();
//vector<shared_ptr<Layer<Dtype> > > layers_;
if (layer->AutoTopBlobs()) {
const int needed_num_top =
std::max(layer->MinTopBlobs(), layer->ExactNumTopBlobs());
for (; num_top < needed_num_top; ++num_top) {
// Add "anonymous" top blobs -- do not modify available_blobs or
// blob_name_to_idx as we don't want these blobs to be usable as input
// to other layers.
AppendTop(param, layer_id, num_top, NULL, NULL);
}
}
// After this layer is connected, set it up.
if (share_from_root) {
// Set up size of top blobs using root_net_
const vector<Blob<Dtype>*>& base_top = root_net_->top_vecs_[layer_id];
const vector<Blob<Dtype>*>& this_top = this->top_vecs_[layer_id];
for (int top_id = 0; top_id < base_top.size(); ++top_id) {
this_top[top_id]->ReshapeLike(*base_top[top_id]);
LOG(INFO) << "Created top blob " << top_id << " (shape: "
<< this_top[top_id]->shape_string() << ") for shared layer "
<< layer_param.name();
}
} else {
layers_[layer_id]->SetUp(bottom_vecs_[layer_id], top_vecs_[layer_id]);
//调用SetUp这一段的介绍看下一篇啊,要不然东西就太多了
}
LOG_IF(INFO, Caffe::root_solver())
<< "Setting up " << layer_names_[layer_id];
//更新向量blob_loss_weights
for (int top_id = 0; top_id < top_vecs_[layer_id].size(); ++top_id) {
if (blob_loss_weights_.size() <= top_id_vecs_[layer_id][top_id]) {
blob_loss_weights_.resize(top_id_vecs_[layer_id][top_id] + 1, Dtype(0));
//调整blob_loss_weights_的大小,使其与top_id_vecs_[layer_id][top_id]一样大
}
blob_loss_weights_[top_id_vecs_[layer_id][top_id]] = layer->loss(top_id);
//loss函数返回loss_weight ——> 在模板类的SetUp方法中会调用SetLossWeights来设置
//其私有数据成员loss_,里面存储的其实是loss_weight
LOG_IF(INFO, Caffe::root_solver())
<< "Top shape: " << top_vecs_[layer_id][top_id]->shape_string();
// top_vecs_[0][0]->shape_string() = "64 1 28 28 (50176)"
if (layer->loss(top_id)) {
LOG_IF(INFO, Caffe::root_solver())
<< " with loss weight " << layer->loss(top_id);
}
memory_used_ += top_vecs_[layer_id][top_id]->count();
}
LOG_IF(INFO, Caffe::root_solver())
<< "Memory required for data: " << memory_used_ * sizeof(Dtype);
const int param_size = layer_param.param_size();
const int num_param_blobs = layers_[layer_id]->blobs().size();
//param_size是Layermeter类型对象layer_param中ParamSpec param成员的个数, num_param_blobs是一
//个Layer中learnable parameter blob的个数,param_size <= num_param_blobs
CHECK_LE(param_size, num_param_blobs)
<< "Too many params specified for layer " << layer_param.name();
ParamSpec default_param_spec;
for (int param_id = 0; param_id < num_param_blobs; ++param_id) {
const ParamSpec* param_spec = (param_id < param_size) ?
&layer_param.param(param_id) : &default_param_spec;
const bool param_need_backward = param_spec->lr_mult() != 0;
//是否反反向传播,主要看基础学习率,如果其为0,则不传播
need_backward |= param_need_backward;
//由param_need_backward来决定need_backward是否为真,并且,只要有一次遍历使得
//need_backward为真,则这个for循环结束后,need_backward也为真
layers_[layer_id]->set_param_propagate_down(param_id,
param_need_backward);
}
for (int param_id = 0; param_id < num_param_blobs; ++param_id) {
AppendParam(param, layer_id, param_id);//附3
}
// Finally, set the backward flag
layer_need_backward_.push_back(need_backwar
d);
if (need_backward) {
for (int top_id = 0; top_id < top_id_vecs_[layer_id].size(); ++top_id) {
blob_need_backward_[top_id_vecs_[layer_id][top_id]] = true;
}
}
}
//大循环,对每个层都进行处理。 附4
// Go through the net backwards to determine which blobs contribute to the
// loss. We can skip backward computation for blobs that don't contribute
// to the loss.
// Also checks if all bottom blobs don't need backward computation (possible
// because the skip_propagate_down param) and so we can skip bacward
// computation for the entire layer
set<string> blobs_under_loss;
set<string> blobs_skip_backp;
//这两个参数你可能不太懂,别着急 往下看
//从上往下,遍历每一层
for (int layer_id = layers_.size() - 1; layer_id >= 0; --layer_id) {
bool layer_contributes_loss = false;
bool layer_skip_propagate_down = true;
//为true,则表示当前layer的bottom blob不需要backward computation,即该层不需要backward computation。
//这个局部变量所表示的意义与caffe.proto里message Layerparameter的propagate_down的定义恰好相反。
//对于每一层的 top
for (int top_id = 0; top_id < top_vecs_[layer_id].size(); ++top_id) {
const string& blob_name = blob_names_[top_id_vecs_[layer_id][top_id]];
if (layers_[layer_id]->loss(top_id) ||
(blobs_under_loss.find(blob_name) != blobs_under_loss.end())) {
//blobs_under_loss的赋值是在下面,也就是上几层
layer_contributes_loss = true;
}
if (blobs_skip_backp.find(blob_name) == blobs_skip_backp.end()) {
layer_skip_propagate_down = false;
}
if (layer_contributes_loss && !layer_skip_propagate_down)
break;
}
// If this layer can skip backward computation, also all his bottom blobs
// don't need backpropagation
if (layer_need_backward_[layer_id] && layer_skip_propagate_down) {
layer_need_backward_[layer_id] = false;
for (int bottom_id = 0; bottom_id < bottom_vecs_[layer_id].size();
++bottom_id) {
bottom_need_backward_[layer_id][bottom_id] = false;
}
}
if (!layer_contributes_loss) { layer_need_backward_[layer_id] = false; }
if (Caffe::root_solver()) {
if (layer_need_backward_[layer_id]) {
LOG(INFO) << layer_names_[layer_id] << " needs backward computation.";
} else {
LOG(INFO) << layer_names_[layer_id]
<< " does not need backward computation.";
}
}
for (int bottom_id = 0; bottom_id < bottom_vecs_[layer_id].size();
++bottom_id) {
if (layer_contributes_loss) {
const string& blob_name =
blob_names_[bottom_id_vecs_[layer_id][bottom_id]];
blobs_under_loss.insert(blob_name);
//判断当前层是否contributions to loss 是的话 就把名字插入 blobs_under_loss中
} else {
bottom_need_backward_[layer_id][bottom_id] = false;
}
if (!bottom_need_backward_[layer_id][bottom_id]) {
const string& blob_name =
blob_names_[bottom_id_vecs_[layer_id][bottom_id]];
blobs_skip_backp.insert(blob_name);
//若本层不需要反反向传播,将名字插入blobs_skip_backp中。
}
}
}
// Handle force_backward if needed.
if (param.force_backward()) {
for (int layer_id = 0; layer_id < layers_.size(); ++layer_id) {
layer_need_backward_[layer_id] = true;
for (int bottom_id = 0;
bottom_id < bottom_need_backward_[layer_id].size(); ++bottom_id) {
bottom_need_backward_[layer_id][bottom_id] =
bottom_need_backward_[layer_id][bottom_id] ||
layers_[layer_id]->AllowForceBackward(bottom_id);
blob_need_backward_[bottom_id_vecs_[layer_id][bottom_id]] =
blob_need_backward_[bottom_id_vecs_[layer_id][bottom_id]] ||
bottom_need_backward_[layer_id][bottom_id];
}
for (int param_id = 0; param_id < layers_[layer_id]->blobs().size();
++param_id) {
layers_[layer_id]->set_param_propagate_down(param_id, true);
}
}
}
// In the end, all remaining blobs are considered output blobs.
for (set<string>::iterator it = available_blobs.begin();
it != available_blobs.end(); ++it) {
LOG_IF(INFO, Caffe::root_solver())
<< "This network produces output " << *it;
net_output_blobs_.push_back(blobs_[blob_name_to_idx[*it]].get());
net_output_blob_indices_.push_back(blob_name_to_idx[*it]);
}
//blob_names_.size() = 9
for (size_t blob_id = 0; blob_id < blob_names_.size(); ++blob_id) {
blob_names_index_[blob_names_[blob_id]] = blob_id;
//向 blob_names_index_里逐一添加元素
}
//layer_names_.size()= 9
for (size_t layer_id = 0; layer_id < layer_names_.size(); ++layer_id) {
layer_names_index_[layer_names_[layer_id]] = layer_id;
}
/* (gdb) p blob_names_index_ $95 = std::map with 9 elements = {["conv1"] = 2, ["conv2"] = 4, ["data"] = 0, ["ip1"] = 6, ["ip2"] = 7, ["label"] = 1, ["loss"] = 8, ["pool1"] = 3, ["pool2"] = 5} (gdb) p layer_names_index_ $96 = std::map with 9 elements = {["conv1"] = 1, ["conv2"] = 3, ["ip1"] = 5, ["ip2"] = 7, ["loss"] = 8, ["mnist"] = 0, ["pool1"] = 2, ["pool2"] = 4, ["relu1"] = 6} */
ShareWeights();
debug_info_ = param.debug_info();
LOG_IF(INFO, Caffe::root_solver()) << "Network initialization done.";
}
template <typename Dtype>
void Net<Dtype>::FilterNet(const NetParameter& param,
NetParameter* param_filtered) {
NetState net_state(param.state());
param_filtered->CopyFrom(param);
param_filtered->clear_layer();
for (int i = 0; i < param.layer_size(); ++i) {
const LayerParameter& layer_param = param.layer(i);
const string& layer_name = layer_param.name();
CHECK(layer_param.include_size() == 0 || layer_param.exclude_size() == 0)
<< "Specify either include rules or exclude rules; not both.";
// If no include rules are specified, the layer is included by default and
// only excluded if it meets one of the exclude rules.
bool layer_included = (layer_param.include_size() == 0);
for (int j = 0; layer_included && j < layer_param.exclude_size(); ++j) {
if (StateMeetsRule(net_state, layer_param.exclude(j), layer_name)) {
layer_included = false;
}
}
for (int j = 0; !layer_included && j < layer_param.include_size(); ++j) {
if (StateMeetsRule(net_state, layer_param.include(j), layer_name)) {
layer_included = true;
}
}
if (layer_included) {
param_filtered->add_layer()->CopyFrom(layer_param);
}
}
}
template <typename Dtype>
bool Net<Dtype>::StateMeetsRule(const NetState& state,
const NetStateRule& rule, const string& layer_name) {
// Check whether the rule is broken due to phase.
if (rule.has_phase()) {
if (rule.phase() != state.phase()) {
LOG_IF(INFO, Caffe::root_solver())
<< "The NetState phase (" << state.phase()
<< ") differed from the phase (" << rule.phase()
<< ") specified by a rule in layer " << layer_name;
return false;
}
}
// Check whether the rule is broken due to min level.
if (rule.has_min_level()) {
if (state.level() < rule.min_level()) {
LOG_IF(INFO, Caffe::root_solver())
<< "The NetState level (" << state.level()
<< ") is above the min_level (" << rule.min_level()
<< ") specified by a rule in layer " << layer_name;
return false;
}
}
// Check whether the rule is broken due to max level.
if (rule.has_max_level()) {
if (state.level() > rule.max_level()) {
LOG_IF(INFO, Caffe::root_solver())
<< "The NetState level (" << state.level()
<< ") is above the max_level (" << rule.max_level()
<< ") specified by a rule in layer " << layer_name;
return false;
}
}
// Check whether the rule is broken due to stage. The NetState must
// contain ALL of the rule's stages to meet it.
for (int i = 0; i < rule.stage_size(); ++i) {
// Check that the NetState contains the rule's ith stage.
bool has_stage = false;
for (int j = 0; !has_stage && j < state.stage_size(); ++j) {
if (rule.stage(i) == state.stage(j)) { has_stage = true; }
}
if (!has_stage) {
LOG_IF(INFO, Caffe::root_solver())
<< "The NetState did not contain stage '" << rule.stage(i)
<< "' specified by a rule in layer " << layer_name;
return false;
}
}
// Check whether the rule is broken due to not_stage. The NetState must
// contain NONE of the rule's not_stages to meet it.
for (int i = 0; i < rule.not_stage_size(); ++i) {
// Check that the NetState contains the rule's ith not_stage.
bool has_stage = false;
for (int j = 0; !has_stage && j < state.stage_size(); ++j) {
if (rule.not_stage(i) == state.stage(j)) { has_stage = true; }
}
if (has_stage) {
LOG_IF(INFO, Caffe::root_solver())
<< "The NetState contained a not_stage '" << rule.not_stage(i)
<< "' specified by a rule in layer " << layer_name;
return false;
}
}
return true;
}
附1::AppendBottom
// Helper for Net::Init: add a new bottom blob to the net.
template <typename Dtype>
int Net<Dtype>::AppendBottom(const NetParameter& param, const int layer_id,
const int bottom_id, set<string>* available_blobs,
map<string, int>* blob_name_to_idx) {
const LayerParameter& layer_param = param.layer(layer_id);
const string& blob_name = layer_param.bottom(bottom_id);
if (available_blobs->find(blob_name) == available_blobs->end()) {
LOG(FATAL) << "Unknown bottom blob '" << blob_name << "' (layer '"
<< layer_param.name() << "', bottom index " << bottom_id << ")";
}
const int blob_id = (*blob_name_to_idx)[blob_name];
LOG_IF(INFO, Caffe::root_solver())
<< layer_names_[layer_id] << " <- " << blob_name;
bottom_vecs_[layer_id].push_back(blobs_[blob_id].get());
//调用shared_ptr类的get()方法提取存储在blobs_中的中间变量
bottom_id_vecs_[layer_id].push_back(blob_id);
available_blobs->erase(blob_name);
bool need_backward = blob_need_backward_[blob_id];
// Check if the backpropagation on bottom_id should be skipped
if (layer_param.propagate_down_size() > 0) {
need_backward = layer_param.propagate_down(bottom_id);
////propagate_down为true,则表示参与BP;否则,skip bp
}
bottom_need_backward_[layer_id].push_back(need_backward);
return blob_id;
}
附2:AppendTop
// Helper for Net::Init: add a new top blob to the net.
template <typename Dtype>
void Net<Dtype>::AppendTop(const NetParameter& param, const int layer_id,
const int top_id, set<string>* available_blobs,
map<string, int>* blob_name_to_idx) {
shared_ptr<LayerParameter> layer_param(
new LayerParameter(param.layer(layer_id)));
//param.layer(layer_id),第layer_id层的layer参数
const string& blob_name = (layer_param->top_size() > top_id) ?
layer_param->top(top_id) : "(automatic)";
// Check if we are doing in-place computation
if (blob_name_to_idx && layer_param->bottom_size() > top_id &&
blob_name == layer_param->bottom(top_id)) {
// In-place computation
LOG_IF(INFO, Caffe::root_solver())
<< layer_param->name() << " -> " << blob_name << " (in-place)";
top_vecs_[layer_id].push_back(blobs_[(*blob_name_to_idx)[blob_name]].get());
top_id_vecs_[layer_id].push_back((*blob_name_to_idx)[blob_name]);
} else if (blob_name_to_idx &&
blob_name_to_idx->find(blob_name) != blob_name_to_idx->end()) {
// If we are not doing in-place computation but have duplicated blobs,
// raise an error.
LOG(FATAL) << "Top blob '" << blob_name
<< "' produced by multiple sources.";
} else {
// Normal output.
if (Caffe::root_solver()) {
LOG(INFO) << layer_param->name() << " -> " << blob_name;
//这里layer_param->name()指的是层的名字,blob_name指的是top或bottom的名字
}
shared_ptr<Blob<Dtype> > blob_pointer(new Blob<Dtype>());
//构造函数 new一个bolb_pointer
const int blob_id = blobs_.size();
blobs_.push_back(blob_pointer);
//blobs_是一个向量,值为vector of length 0, capacity 0
//在其尾部插入blob_pointer值为vector of length 1, capacity 1 = {{px =
//0x6af420, pn = {pi_ = 0x6af480}}}
//感觉一开始的blibs_就是一个向量,里面储存的是可以0指向blob的的只能指针,然后将指向
//blob_pointer的指针赋给了它
blob_names_.push_back(blob_name);
blob_need_backward_.push_back(false);
if (blob_name_to_idx) { (*blob_name_to_idx)[blob_name] = blob_id; }
//*blob_name_to_idx= std::map with 1 elements = {["data"] = 0}
/* blob_name_to_idx是一个局部变量,其实它是在当前layer的top blob 和下一层的bottom blob间起着一个桥梁作用。 blob_name_to_idx中元素的pair是从网络最开始一层一层搭建的过程中压入map的,其中的name和id都是不重复的。name是关键字——不重复是map数据结构的必然要求,id也是不重复的——0,1,2... blob_name_to_idx和blobs_一样,在"Normal output"的情形下,每次遍历到一个top blob的时候都会更新 参考 http://www.itdaan.com/blog/2016/03/26/726330.html */
/// top_vecs stores the vectors containing the output for each layer
//vector<vector<Blob<Dtype>*> > top_vecs_;
//vector<vector<int> > top_id_vecs_;
top_id_vecs_[layer_id].push_back(blob_id);
top_vecs_[layer_id].push_back(blob_pointer.get());
}
if (available_blobs) { available_blobs->insert(blob_name); }
}
/* 总结:AppendTop主要干了以下几件事: 1.new了bolb类的指针; 2.将blob的指针,名字等压入blobs; 3.更新map类型的blob_name_to_idx以及set类型的available_blobs; 现在只是一个初始化过程,还没有进行 数据的处理,现在只是搭框架。 */
附3:
AppendParam函数
template <typename Dtype>
void Net<Dtype>::AppendParam(const NetParameter& param, const int layer_id,
const int param_id) {
const LayerParameter& layer_param = layers_[layer_id]->layer_param();//模板类Layer的layer_param方法,返回Layerparameter类型成员
const int param_size = layer_param.param_size();
string param_name =
(param_size > param_id) ? layer_param.param(param_id).name() : "";
if (param_name.size()) {
param_display_names_.push_back(param_name);//vector<string> param_display_names_ 这里param_name获取的是PaParamSpec类型中的name成员,如果有name且非空,就把name压入该向量,否则就压入param_id
} else {
ostringstream param_display_name;
param_display_name << param_id;
param_display_names_.push_back(param_display_name.str());
}
//Append 参数blob 每一次循环,net_param_id和param_id_vecs_都会更新
const int net_param_id = params_.size();//vector<shared_ptr<Blob<Dtype> > > params_--->The parameters in the network,整个网络的参数的id,!!!不管这个参数有没有non-emty name,是否参与share!!!
params_.push_back(layers_[layer_id]->blobs()[param_id]);//将当前layer当前"参数blob"压入params_ --->vector<shared_ptr<Blob<Dtype> > > params_
param_id_vecs_[layer_id].push_back(net_param_id);//将整个网络的参数按层的形式来存储,存储的元素可以理解为params_这个向量的下标值(类型为整型)
param_layer_indices_.push_back(make_pair(layer_id, param_id));//param_layer_indices_是向量,其元素为当layer_id 与当前param_id 组成的pair.vector<pair<int, int> > param_layer_indices_
//获取每个param_id所对应的Paramspec类型成员,如果param_id >= param_size 则返回default_param_spec。注意param_size <= num_param_blobs
ParamSpec default_param_spec;
const ParamSpec* param_spec = (layer_param.param_size() > param_id) ?
&layer_param.param(param_id) : &default_param_spec;
if (!param_size || !param_name.size() || (param_name.size() &&
param_names_index_.find(param_name) == param_names_index_.end())) {
// This layer "owns" this parameter blob -- it is either anonymous
// (i.e., not given a param_name) or explicitly given a name that we
// haven't already seen.
// 相反,如果param_name不为空,而且能够在param_names_index_中找到,说明这个parameter已经存在于之前的某个或者某些网络层里,说明这个parameter是共享于多个layer
// 在caffe.proto的message ParamSpec里关于name的注释——>To share a parameter between two layers, give it a (non-empty) name, 可见,如果一个parameter是共享与多个网络层,那么它会有一个非空的name
param_owners_.push_back(-1);//vector<int> param_owners_ 是一个存储parameter "onwer"的一个向量 ——> -1 表示当前Layer就是该parameter的"owner"
//添加param_name
if (param_name.size()) {
//map<string, int> param_names_index_是整个网络的参数non-empty name与index的映射。
//注意,这个name是ParamSpec 类型中的name,而且,""To share a parameter between two layers, give it a (non-empty) name"",所以说这个map中存储的pair是<会被share的parameter_name, 其对应index>
param_names_index_[param_name] = net_param_id;//map<string, int> param_names_index_ 。虽然每一次循环,net_param_id都会更新,但是net_param_id只有当param_name.size()>0时才会被压入向量param_names_index_
}
//添加learnable_param
const int learnable_param_id = learnable_params_.size();//vector<Blob<Dtype>*> learnable_params_
learnable_params_.push_back(params_[net_param_id].get());//压入learnable parameter ---> 在模板类layer中,定义了一个blobs_成员,其存储的就是learnable parameter。随后压入learnable_param_id
learnable_param_ids_.push_back(learnable_param_id);//vector<int> learnable_param_ids_
has_params_lr_.push_back(param_spec->has_lr_mult());//vector<bool> has_params_lr_
has_params_decay_.push_back(param_spec->has_decay_mult());
params_lr_.push_back(param_spec->lr_mult());//vector<float> params_lr_
params_weight_decay_.push_back(param_spec->decay_mult());
} else {
// Named param blob with name we've seen before: share params
const int owner_net_param_id = param_names_index_[param_name];//因为"To share a parameter between two layers, give it a (non-empty) name",所以这句代码就是获取shared parameter的"owner" net_param_id
param_owners_.push_back(owner_net_param_id);//vector<int> param_owners_
const pair<int, int>& owner_index =
param_layer_indices_[owner_net_param_id];//只获取了那些shared的parameter,即具有non-empty name的parameter的pair<layer_id, param_id>
const int owner_layer_id = owner_index.first;
const int owner_param_id = owner_index.second;
LOG_IF(INFO, Caffe::root_solver()) << "Sharing parameters '" << param_name
<< "' owned by "
<< "layer '" << layer_names_[owner_layer_id] << "', param "
<< "index " << owner_param_id;
Blob<Dtype>* this_blob = layers_[layer_id]->blobs()[param_id].get();//获取当前层的当前参数Blob
Blob<Dtype>* owner_blob =
layers_[owner_layer_id]->blobs()[owner_param_id].get();//获取owner layer的对应的参数blob
const int param_size = layer_param.param_size();
if (param_size > param_id && (layer_param.param(param_id).share_mode() ==
ParamSpec_DimCheckMode_PERMISSIVE)) {
// Permissive dimension checking -- only check counts are the same.
CHECK_EQ(this_blob->count(), owner_blob->count())
<< "Cannot share param '" << param_name << "' owned by layer '"
<< layer_names_[owner_layer_id] << "' with layer '"
<< layer_names_[layer_id] << "'; count mismatch. Owner layer param "
<< "shape is " << owner_blob->shape_string() << "; sharing layer "
<< "shape is " << this_blob->shape_string();
} else {
// Strict dimension checking -- all dims must be the same.
CHECK(this_blob->shape() == owner_blob->shape())
<< "Cannot share param '" << param_name << "' owned by layer '"
<< layer_names_[owner_layer_id] << "' with layer '"
<< layer_names_[layer_id] << "'; shape mismatch. Owner layer param "
<< "shape is " << owner_blob->shape_string() << "; sharing layer "
<< "expects shape " << this_blob->shape_string();
}
//获取owner layer的learnable_param_id,并且压入当前layer的向量learnable_param_ids_。
//而且在这里也没有把参数blob压入learnable_params_向量(只是将id压入learnable_param_ids_),从而避免当前layer与sharing layer之间关于shared parameter blob 的重复
const int learnable_param_id = learnable_param_ids_[owner_net_param_id];//vector<int> learnable_param_ids_ ; vector<float> params_lr_;
learnable_param_ids_.push_back(learnable_param_id);
if (param_spec->has_lr_mult()) {
if (has_params_lr_[learnable_param_id]) {
CHECK_EQ(param_spec->lr_mult(), params_lr_[learnable_param_id])
<< "Shared param '" << param_name << "' has mismatched lr_mult.";
} else {
has_params_lr_[learnable_param_id] = true;
params_lr_[learnable_param_id] = param_spec->lr_mult();
}
}
if (param_spec->has_decay_mult()) {
if (has_params_decay_[learnable_param_id]) {
CHECK_EQ(param_spec->decay_mult(),
params_weight_decay_[learnable_param_id])
<< "Shared param '" << param_name << "' has mismatched decay_mult.";
} else {
has_params_decay_[learnable_param_id] = true;
params_weight_decay_[learnable_param_id] = param_spec->decay_mult();
}
}
}
}
ps:借鉴的这个网址http://blog.csdn.net/iamzhangzhuping/article/details/50537240
附4:
I0509 15:23:17.999642 6356 layer_factory.hpp:77] Creating layer mnist
[New Thread 0x7ffff0bc6700 (LWP 6357)]
I0509 15:23:18.007805 6356 net.cpp:91] Creating Layer mnist
I0509 15:23:18.007853 6357 db_lmdb.cpp:38] Opened lmdb examples/mnist/mnist_train_lmdb
I0509 15:23:18.007879 6356 net.cpp:399] mnist -> data
I0509 15:23:18.008003 6356 net.cpp:399] mnist -> label
I0509 15:23:18.008141 6356 data_layer.cpp:41] output data size: 64,1,28,28
I0509 15:23:18.008430 6356 base_data_layer.cpp:69] Initializing prefetch
[New Thread 0x7effebfff700 (LWP 6358)]
I0509 15:23:18.009194 6356 base_data_layer.cpp:72] Prefetch initialized.
I0509 15:23:18.009217 6356 net.cpp:141] Setting up mnist
I0509 15:23:18.009263 6356 net.cpp:148] Top shape: 64 1 28 28 (50176)
I0509 15:23:18.009282 6356 net.cpp:148] Top shape: 64 (64)
I0509 15:23:18.009294 6356 net.cpp:156] Memory required for data: 200960
I0509 15:23:18.009320 6356 layer_factory.hpp:77] Creating layer conv1
I0509 15:23:18.009393 6356 net.cpp:91] Creating Layer conv1
I0509 15:23:18.009428 6356 net.cpp:425] conv1 <- data
I0509 15:23:18.009490 6356 net.cpp:399] conv1 -> conv1
I0509 15:23:18.009726 6356 net.cpp:141] Setting up conv1
I0509 15:23:18.009752 6356 net.cpp:148] Top shape: 64 20 24 24 (737280)
I0509 15:23:18.009764 6356 net.cpp:156] Memory required for data: 3150080
I0509 15:23:18.009879 6356 layer_factory.hpp:77] Creating layer pool1
I0509 15:23:18.009918 6356 net.cpp:91] Creating Layer pool1
I0509 15:23:18.009935 6356 net.cpp:425] pool1 <- conv1
I0509 15:23:18.009965 6356 net.cpp:399] pool1 -> pool1
I0509 15:23:18.010017 6356 net.cpp:141] Setting up pool1
I0509 15:23:18.010040 6356 net.cpp:148] Top shape: 64 20 12 12 (184320)
I0509 15:23:18.010063 6356 net.cpp:156] Memory required for data: 3887360
I0509 15:23:18.010081 6356 layer_factory.hpp:77] Creating layer conv2
I0509 15:23:18.010113 6356 net.cpp:91] Creating Layer conv2
I0509 15:23:18.010128 6356 net.cpp:425] conv2 <- pool1
I0509 15:23:18.010161 6356 net.cpp:399] conv2 -> conv2
I0509 15:23:18.010467 6358 data_layer.cpp:102] Prefetch batch: 1 ms.
I0509 15:23:18.010498 6358 data_layer.cpp:103] Read time: 0.112 ms.
I0509 15:23:18.010507 6358 data_layer.cpp:104] Transform time: 0.714 ms.
I0509 15:23:18.011415 6358 data_layer.cpp:102] Prefetch batch: 0 ms.
I0509 15:23:18.011430 6358 data_layer.cpp:103] Read time: 0.076 ms.
I0509 15:23:18.011437 6358 data_layer.cpp:104] Transform time: 0.565 ms.
I0509 15:23:18.011806 6356 net.cpp:141] Setting up conv2
I0509 15:23:18.011836 6356 net.cpp:148] Top shape: 64 50 8 8 (204800)
I0509 15:23:18.011848 6356 net.cpp:156] Memory required for data: 4706560
I0509 15:23:18.011881 6356 layer_factory.hpp:77] Creating layer pool2
I0509 15:23:18.011915 6356 net.cpp:91] Creating Layer pool2
I0509 15:23:18.011934 6356 net.cpp:425] pool2 <- conv2
I0509 15:23:18.011976 6356 net.cpp:399] pool2 -> pool2
I0509 15:23:18.012018 6356 net.cpp:141] Setting up pool2
I0509 15:23:18.012035 6356 net.cpp:148] Top shape: 64 50 4 4 (51200)
I0509 15:23:18.012043 6356 net.cpp:156] Memory required for data: 4911360
I0509 15:23:18.012054 6356 layer_factory.hpp:77] Creating layer ip1
I0509 15:23:18.012079 6356 net.cpp:91] Creating Layer ip1
I0509 15:23:18.012122 6356 net.cpp:425] ip1 <- pool2
I0509 15:23:18.012156 6356 net.cpp:399] ip1 -> ip1
I0509 15:23:18.012449 6358 data_layer.cpp:102] Prefetch batch: 0 ms.
I0509 15:23:18.012465 6358 data_layer.cpp:103] Read time: 0.099 ms.
I0509 15:23:18.012475 6358 data_layer.cpp:104] Transform time: 0.595 ms.
I0509 15:23:18.035526 6356 net.cpp:141] Setting up ip1
I0509 15:23:18.035575 6356 net.cpp:148] Top shape: 64 500 (32000)
I0509 15:23:18.035583 6356 net.cpp:156] Memory required for data: 5039360
I0509 15:23:18.035614 6356 layer_factory.hpp:77] Creating layer relu1
I0509 15:23:18.035656 6356 net.cpp:91] Creating Layer relu1
I0509 15:23:18.035681 6356 net.cpp:425] relu1 <- ip1
I0509 15:23:18.035698 6356 net.cpp:386] relu1 -> ip1 (in-place)
I0509 15:23:18.035717 6356 net.cpp:141] Setting up relu1
I0509 15:23:18.035727 6356 net.cpp:148] Top shape: 64 500 (32000)
I0509 15:23:18.035732 6356 net.cpp:156] Memory required for data: 5167360
I0509 15:23:18.035739 6356 layer_factory.hpp:77] Creating layer ip2
I0509 15:23:18.035755 6356 net.cpp:91] Creating Layer ip2
I0509 15:23:18.035764 6356 net.cpp:425] ip2 <- ip1
I0509 15:23:18.035806 6356 net.cpp:399] ip2 -> ip2
I0509 15:23:18.036211 6356 net.cpp:141] Setting up ip2
I0509 15:23:18.036257 6356 net.cpp:148] Top shape: 64 10 (640)
I0509 15:23:18.036262 6356 net.cpp:156] Memory required for data: 5169920
I0509 15:23:18.036274 6356 layer_factory.hpp:77] Creating layer loss
I0509 15:23:18.036298 6356 net.cpp:91] Creating Layer loss
I0509 15:23:18.036308 6356 net.cpp:425] loss <- ip2
I0509 15:23:18.036320 6356 net.cpp:425] loss <- label
I0509 15:23:18.036336 6356 net.cpp:399] loss -> loss
I0509 15:23:18.036363 6356 layer_factory.hpp:77] Creating layer loss
I0509 15:23:18.036408 6356 net.cpp:141] Setting up loss
I0509 15:23:18.036420 6356 net.cpp:148] Top shape: (1)
I0509 15:23:18.036427 6356 net.cpp:151] with loss weight 1
I0509 15:23:18.036437 6356 net.cpp:156] Memory required for data: 5169924