Introduction
The Wu Xing, or the Five Movements, Five Phases or Five Steps/Stages, are chiefly an ancient mnemonic device, in many traditional Chinese fields.
The doctrine of five phases describes two cycles, a generating or creation cycle, also known as "mother-son", and an overcoming or destruction cycle, also known as "grandfather-nephew", of interactions between the phases.
Generating:
Overcoming:
With the two types of interactions in the above graph, any two nodes are connected by an edge.
Problem
In a graph with N nodes, to ensure that any two nodes are connected by at least one edge, how many types of interactions are required at least? Here a type of interaction should have the following properties:
Input
For each test case, there's a line with an integer N (3 <= N < 1,000,000), the number of nodes in the graph.
N = 0 indicates the end of input.Output
For each test case, output a line with the number of interactions that are required at least.
Sample Input
5 0
Sample Output
2
Reference
http://en.wikipedia.org/wiki/Wu_Xing
题目大意:有n个顶点的有向图,每两个顶点之间都有一条边。给出interaction的定义『1、这是一个有向边集;2、有且仅有一条开始边;3、有且仅有一条结束边;4、最后成环』,问最少有多少个interaction,就能把图全覆盖。
题目分析:以下分析建立在一个基础上,每一笔都能画出一个n条边的环(而事实似乎就是如此)。我们可以看到,他说要是任意两个点都有联系,看到这里,马上可以想到,要满足这个条件, 必须需要n*(n-1)/2条边,于是,换一种思考,该题目就可以理解为,在n*(n-1)/2条边中可以构成几个环。如果想到这里,你又开始去画点画边,那估计最后结果还是要悲剧。至少我是画不出,就算画出了也不知道到底是否是最小个数的环。 所以我们接着继续分析。。。抛开怎么连线不管, 往整体方向想,要构成一个环, n个点必须要n条边,可以理解,最终所有环所构成的边,都不会超过n*(n-1)/2条边。 所以每条边都在一个或几个环内,(其中不同的环可以共用一条边)。 所以至少有(n-1)/2个环, 如果可以整除,那么商就是答案。如果不能整除呢? 那么余下的边必定可以再组成一个环。所以如果(n-1)%2 != 0, 那么答案就等于(n-1)/2 +1;结果就是和n/2的结果一样
#include<stdio.h> int main() { int n; while(scanf("%d",&n),n) printf("%d\n",n/2); return 0; }