练习一1012

 Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers among these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be only of theoretical interest. 
This problem involves the efficient computation of integer roots of numbers. 
Given an integer n>=1 and an integer p>= 1 you have to write a program that determines the n th positive root of p. In this problem, given such integers n and p, p will always be of the form k to the nth. power, for an integer k (this integer is what your program must find).
 

Input
The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs 1<=n<= 200, 1<=p<10<sup>101</sup> and there exists an integer k, 1<=k<=10<sup>9</sup> such that k<sup>n</sup> = p.
 

Output
For each integer pair n and p the value k should be printed, i.e., the number k such that k n =p.
 

Sample Input
2 16
3 27
7 4357186184021382204544
 

Sample Output
4
3
1234
 

Statistic | Submit | Back 
思路:
又是一道非常简单的题目,注意要用double类型,用一个数学函数pow即可。
代码:
 #include<iostream>
#include<cmath>
using namespace std;
int main()
{
double n,p;
while(cin>>n>>p)
{
double m;
m=pow(p,1/n);
cout<<m<<endl;
}
return 0;

你可能感兴趣的:(练习一1012)