SVM算法教科书(二)

四、代码分析研究(代码来自网上):

#include<iostream>
#include<map>
#include<opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<string>
#include<opencv2/ml/ml.hpp>
#include<opencv2/features2d/features2d.hpp>
#include<opencv2/nonfree/features2d.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<fstream>
//boost 库
#include<boost/filesystem.hpp>

#include"Config.h"

using namespace cv;
using namespace std;
//定义一个boost库的命名空间
namespace fs=boost::filesystem;
using namespace fs;

class categorizer
{
private :
    //从类目名称到数据的map映射
    map<string,Mat> result_objects; 
    //存放所有训练图片的BOW
    map<string,Mat> allsamples_bow;
    //从类目名称到训练图集的映射,关键字可以重复出现
    multimap<string,Mat> train_set;
    // 训练得到的SVM
    CvSVM *stor_svms;
    //类目名称,也就是TRAIN_FOLDER设置的目录名
    vector<string> category_name;
    //类目数目
    int categories_size;
    //用SURF特征构造视觉词库的聚类数目
    int clusters;
    //存放训练图片词典
    Mat vocab;

    //特征检测器detectors与描述子提取器extractors 泛型句柄类Ptr
    Ptr<FeatureDetector> featureDecter;
    Ptr<DescriptorExtractor> descriptorExtractor;

    Ptr<BOWKMeansTrainer> bowtrainer;
    Ptr<BOWImgDescriptorExtractor> bowDescriptorExtractor;
    Ptr<FlannBasedMatcher> descriptorMacher;

    //构造训练集合
    void make_train_set();
    // 移除扩展名,用来讲模板组织成类目
    string remove_extention(string);

public:
    //构造函数
    categorizer(int);
    // 聚类得出词典
    void bulid_vacab();
    //构造BOW
    void compute_bow_image();
    //训练分类器
    void trainSvm();
    //将测试图片分类
    void category_By_svm();
};

// 移除扩展名,用来讲模板组织成类目
string categorizer::remove_extention(string full_name)
{
    //find_last_of找出字符最后一次出现的地方
    int last_index=full_name.find_last_of(".");
    string name=full_name.substr(0,last_index);
    return name;
}

// 构造函数
categorizer::categorizer(int _clusters)
{
    cout<<"开始初始化..."<<endl;
    clusters=_clusters;
    //初始化指针
    featureDecter=new SurfFeatureDetector();
    descriptorExtractor=new SurfDescriptorExtractor();

    bowtrainer=new BOWKMeansTrainer(clusters);
    descriptorMacher=new FlannBasedMatcher();
    bowDescriptorExtractor=new BOWImgDescriptorExtractor(descriptorExtractor,descriptorMacher);

    //boost库文件 遍历数据文件夹 directory_iterator(p)就是迭代器的起点,无参数的directory_iterator()就是迭代器的终点。
    directory_iterator begin_iter(TEMPLATE_FOLDER);
    directory_iterator end_iter;
    //获取该目录下的所有文件名
    for(;begin_iter!=end_iter;++begin_iter)
    {
        string filename=string(TEMPLATE_FOLDER)+begin_iter->path().filename().string();
        string sub_category =remove_extention(begin_iter->path().filename().string());
        //读入模板图片
        Mat image=imread(filename);
        Mat templ_image;

        //存储原图模板
        result_objects[sub_category]=image;
    }

    cout<<"初始化完毕..."<<endl;
    //读取训练集
    make_train_set();
}


//构造训练集合
void categorizer::make_train_set()
{
    cout<<"读取训练集..."<<endl;
    string categor;
    //递归迭代rescursive 直接定义两个迭代器:i为迭代起点(有参数),end_iter迭代终点
    for(recursive_directory_iterator i(TRAIN_FOLDER),end_iter;i!=end_iter;i++)
    {
        // level == 0即为目录,因为TRAIN__FOLDER中设置如此
        if(i.level()==0)
        {
            // 将类目名称设置为目录的名称
            categor=(i->path()).filename().string();
            category_name.push_back(categor);

        }else
        {
            // 读取文件夹下的文件。level 1表示这是一副训练图,通过multimap容器来建立由类目名称到训练图的一对多的映射
            string filename=string(TRAIN_FOLDER)+categor+string("/")+(i->path()).filename().string();
            Mat temp=imread(filename,CV_LOAD_IMAGE_GRAYSCALE);
            pair<string,Mat> p(categor,temp);

            //得到训练集
            train_set.insert(p);
        }   
    }

    categories_size=category_name.size();
    cout<<"发现 "<<categories_size<<"种类别物体..."<<endl;
}


// 训练图片feature聚类,得出词典
void categorizer::bulid_vacab()
{
    FileStorage vacab_fs(DATA_FOLDER "vocab.xml",FileStorage::READ);

    //如果之前已经生成好,就不需要重新聚类生成词典
    if(vacab_fs.isOpened())
    {
        cout<<"图片已经聚类,词典已经存在.."<<endl;
        vacab_fs.release();
    }
    else
    {
        Mat vocab_descriptors;

        // 对于每一幅模板,提取SURF算子,存入到vocab_descriptors中
        multimap<string,Mat> ::iterator i=train_set.begin();
        for(;i!=train_set.end();i++)
        {
            vector<KeyPoint>kp;
            Mat templ=(*i).second;
            Mat descrip;
            featureDecter->detect(templ,kp);

            descriptorExtractor->compute(templ,kp,descrip);
            //push_back(Mat);在原来的Mat的最后一行后再加几行,元素为Mat时, 其类型和列的数目 必须和矩阵容器是相同的
            vocab_descriptors.push_back(descrip);
        }
        cout << "训练图片开始聚类..." << endl;
        //将每一副图的Surf特征利用add函数加入到bowTraining中去,就可以进行聚类训练了
        bowtrainer->add(vocab_descriptors);
        // 对SURF描述子进行聚类
        vocab=bowtrainer->cluster();
        cout<<"聚类完毕,得出词典..."<<endl;

        //以文件格式保存词典
        FileStorage file_stor(DATA_FOLDER "vocab.xml",FileStorage::WRITE);
        file_stor<<"vocabulary"<<vocab;
        file_stor.release();

    }
}


//构造bag of words
void categorizer::compute_bow_image()
{
    cout<<"构造bag of words..."<<endl;
    FileStorage va_fs(DATA_FOLDER "vocab.xml",FileStorage::READ);

    //如果词典存在则直接读取
    if(va_fs.isOpened())
    {
        Mat temp_vacab;
        va_fs["vocabulary"] >> temp_vacab;
        bowDescriptorExtractor->setVocabulary(temp_vacab);
        va_fs.release();

    }else
    {
        //对每张图片的特征点,统计这张图片各个类别出现的频率,作为这张图片的bag of words
        bowDescriptorExtractor->setVocabulary(vocab);
    }

    //如果bow.txt已经存在说明之前已经训练过了,下面就不用重新构造BOW
    string bow_path=string(DATA_FOLDER)+string("bow.txt");
    std::ifstream read_file(bow_path);

    //如BOW已经存在,则不需要构造
    if(read_file!=0)
    {
        cout<<"BOW 已经准备好..."<<endl;
    }
    else{

        // 对于每一幅模板,提取SURF算子,存入到vocab_descriptors中
        multimap<string,Mat> ::iterator i=train_set.begin();

        for(;i!=train_set.end();i++)
        {
            vector<KeyPoint>kp;
            string cate_nam=(*i).first;
            Mat tem_image=(*i).second;
            Mat imageDescriptor;
            featureDecter->detect(tem_image,kp);

            bowDescriptorExtractor->compute(tem_image,kp,imageDescriptor);
            //push_back(Mat);在原来的Mat的最后一行后再加几行,元素为Mat时, 其类型和列的数目 必须和矩阵容器是相同的
            allsamples_bow[cate_nam].push_back(imageDescriptor);
        }
        //简单输出一个文本,为后面判断做准备
        std::ofstream ous(bow_path);//wei
        ous<<"flag";
        cout<<"bag of words构造完毕..."<<endl;

    }
}

//训练分类器

void categorizer::trainSvm()
{
    int flag=0;
    for(int k=0;k<categories_size;k++)
    {
        string svm_file_path=string(DATA_FOLDER) + category_name[k] + string("SVM.xml");
        FileStorage svm_fil(svm_file_path,FileStorage::READ);
        //判断训练结果是否存在
        if(svm_fil.isOpened())
        {
            svm_fil.release();
            continue;
        }
        else
        {
            flag=-1;
            break;
        }

    }

    //如果训练结果已经存在则不需要重新训练
    if(flag!=-1)
    {
        cout<<"分类器已经训练完毕..."<<endl;
    }else

    {
        stor_svms=new CvSVM[categories_size];
        //设置训练参数
        SVMParams svmParams;
        svmParams.svm_type    = CvSVM::C_SVC;
        svmParams.kernel_type = CvSVM::LINEAR;
        svmParams.term_crit   = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6);

        cout<<"训练分类器..."<<endl;
        for(int i=0;i<categories_size;i++)
        {
            Mat tem_Samples( 0, allsamples_bow.at( category_name[i] ).cols, allsamples_bow.at( category_name[i] ).type() );
            Mat responses( 0, 1, CV_32SC1 );
            tem_Samples.push_back( allsamples_bow.at( category_name[i] ) );
            Mat posResponses( allsamples_bow.at( category_name[i]).rows, 1, CV_32SC1, Scalar::all(1) ); 
            responses.push_back( posResponses );

            for ( auto itr = allsamples_bow.begin(); itr != allsamples_bow.end(); ++itr ) 
            {
                if ( itr -> first == category_name[i] ) {
                    continue;
                }
                tem_Samples.push_back( itr -> second );
                Mat response( itr -> second.rows, 1, CV_32SC1, Scalar::all( -1 ) );
                responses.push_back( response );

            }

            stor_svms[i].train( tem_Samples, responses, Mat(), Mat(), svmParams );
            //存储svm
            string svm_filename=string(DATA_FOLDER) + category_name[i] + string("SVM.xml");
            stor_svms[i].save(svm_filename.c_str());
        }

        cout<<"分类器训练完毕..."<<endl;

    }
}

//对测试图片进行分类

void categorizer::category_By_svm()
{
    cout<<"物体分类开始..."<<endl;
    Mat gray_pic;
    Mat threshold_image;
    string prediction_category;
    float curConfidence;

    directory_iterator begin_train(TEST_FOLDER);
    directory_iterator end_train;

    for(;begin_train!=end_train;++begin_train)
    {

        //获取该目录下的图片名
        string train_pic_name=(begin_train->path()).filename().string();
        string train_pic_path=string(TEST_FOLDER)+string("/")+(begin_train->path()).filename().string();

        //读取图片
        cout<<train_pic_path<<endl;
        Mat input_pic=imread(train_pic_path);
        imshow("输入图片:",input_pic);
        cvtColor(input_pic,gray_pic,CV_BGR2GRAY);

        // 提取BOW描述子
        vector<KeyPoint>kp;
        Mat test;
        featureDecter->detect(gray_pic,kp);
        bowDescriptorExtractor->compute(gray_pic,kp,test);

        int sign=0;
        float best_score = -2.0f;

        for(int i=0;i<categories_size;i++)
        {   

            string cate_na=category_name[i];

            string f_path=string(DATA_FOLDER)+cate_na + string("SVM.xml");
            FileStorage svm_fs(f_path,FileStorage::READ);
            //读取SVM.xml
            if(svm_fs.isOpened())
            {

                svm_fs.release();   
                CvSVM st_svm;
                st_svm.load(f_path.c_str());

                if(sign==0)
                {
                    float score_Value = st_svm.predict( test, true );
                    float class_Value = st_svm.predict( test, false );
                    sign = ( score_Value < 0.0f ) == ( class_Value < 0.0f )? 1 : -1;
                }
                curConfidence = sign * st_svm.predict( test, true );
            }
            else
            {               
                if(sign==0)
                {
                    float scoreValue = stor_svms[i].predict( test, true );
                    float classValue = stor_svms[i].predict( test, false );
                    sign = ( scoreValue < 0.0f ) == ( classValue < 0.0f )? 1 : -1;
                }
                curConfidence = sign * stor_svms[i].predict( test, true );
            }

            if(curConfidence>best_score)
            {
                best_score=curConfidence;
                prediction_category=cate_na;
            }

        }

        //将图片写入相应的文件夹下
        directory_iterator begin_iterater(RESULT_FOLDER);
        directory_iterator end_iterator;
        //获取该目录下的文件名
        for(;begin_iterater!=end_iterator;++begin_iterater)
        {

            if(begin_iterater->path().filename().string()==prediction_category)
            {

                string filename=string(RESULT_FOLDER)+prediction_category+string("/")+train_pic_name;
                imwrite(filename,input_pic);
            }

        }
        //显示输出
        namedWindow("Dectect Object");
        cout<<"这张图属于: "<<prediction_category<<endl;
        imshow("Dectect Object",result_objects[prediction_category]);
        waitKey(0);
    }
}

int main(void)
{
    int clusters=1000;
    categorizer c(clusters);
    //特征聚类
    c.bulid_vacab();
    //构造BOW
    c.compute_bow_image();
    //训练分类器
    c.trainSvm();
    //将测试图片分类
    c.category_By_svm();
    return 0;
}

你可能感兴趣的:(算法,SVM,opencv)