题目:
Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋
times.
You may assume that the array is non-empty and the majority element always exist in the array.
找出数组中出现次数超过数组长度一半的值。
Solution:
- Runtime: O(n2)— Brute force solution: Check each element if it is the majority element.
- Runtime: O(n), Space: O(n)— Hash table: Maintain a hash table of the counts of each element, then find the most common one.
- Runtime: O(n log n)— Divide and conquer: Divide the array into two halves, then find the majority element A in the first half and the majority element B in the second half. The global majority element must either be A or B. If A == B, then it automatically becomes the global majority element. If not, then both A and B are the candidates for the majority element, and it is suffice to check the count of occurrences for at most two candidates. The runtime complexity, T(n) = T(n/2) + 2n = O(n logn).
- Runtime: O(n) —Moore voting algorithm: We maintain a current candidate and a counter initialized to 0. As we iterate the array, we look at the current element x:
- If the counter is 0, we set the current candidate to x and the counter to 1.
- If the counter is not 0, we increment or decrement the counter based on whether x is the current candidate.
After one pass, the current candidate is the majority element. Runtime complexity = O(n)
Moore Voting Algorithm:
该算法要求目标数组存在majority元素(大于n/2),否则需要检验。
算法演示 here.
思路解析:
1. 初始化majorityIndex,并且维护其对应count;
2. 遍历数组,如果下一个元素和当前候选元素相同,count加1,否则count减1;
3. 如果count为0时,则更改候选元素,并且重置count为1;
4. 返回A[majorityIndex]
原理:如果majority元素存在(majority元素个数大于n/2,个数超过数组长度一半),那么无论它的各个元素位置是如何分布的,其count经过抵消和增加后,最后一定是大于等于1的。
如果不能保证majority存在,需要检验。
复杂度:O(N)
Attention: 循环时从i = 1开始,从下一个元素开始,因为count已经置1.
AC Code:
class Solution {
public:
int majorityElement(vector<int> &num) {
//the majority element 存在并且唯一
int majorityIndex = 0;
for(int cnt = 1, i = 1; i < num.size(); i++)
{
num[majorityIndex] == num[i] ? cnt++ : cnt--;
if(cnt == 0)
{
cnt = 1;
majorityIndex = i;
}
}
return num[majorityIndex];
}
};
检验:
bool
isMajority(
int
a[],
int
size,
int
cand)
{
int
i, count = 0;
for
(i = 0; i < size; i++)
if
(a[i] == cand)
count++;
if
(count > size/2)
return
1;
else
return
0;
}