大意就是两个俱乐部对垒,每个俱乐部出战n个人,都有一个战斗值,1*1的对决,战斗值高的一方总是获胜。
赢的得2分,平局1分,输了不得分。。。
现在问最多你的俱乐部可以得多少分。。。。
显然的最大权匹配,,,先出来出来两两之间对垒的得分情况,在就是裸的km了。
/***************************************** Author :Crazy_AC(JamesQi) Time :2015 File Name : *****************************************/ // #pragma comment(linker, "/STACK:1024000000,1024000000") #include <iostream> #include <algorithm> #include <iomanip> #include <sstream> #include <string> #include <stack> #include <queue> #include <deque> #include <vector> #include <map> #include <set> #include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #include <climits> using namespace std; #define MEM(x,y) memset(x, y,sizeof x) #define pk push_back typedef long long LL; typedef unsigned long long ULL; typedef pair<int,int> ii; typedef pair<ii,int> iii; const double eps = 1e-10; const int inf = 1 << 30; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; /**********************Point*****************************/ struct Point{ double x,y; Point(double x=0,double y=0):x(x),y(y){} }; typedef Point Vector; Vector operator + (Vector A,Vector B){ return Vector(A.x + B.x,A.y + B.y); } Vector operator - (Vector A,Vector B){//向量减法 return Vector(A.x - B.x,A.y - B.y); } Vector operator * (Vector A,double p){//向量数乘 return Vector(A.x * p,A.y * p); } Vector operator / (Vector A,double p){//向量除实数 return Vector(A.x / p,A.y / p); } int dcmp(double x){//精度正负、0的判断 if (fabs(x) < eps) return 0; return x < 0?-1:1; } bool operator < (const Point& A,const Point& B){//小于符号的重载 return A.x < B.x || (A.x == B.x && A.y < B.y); } bool operator == (const Point& A,const Point& B){//点重的判断 return dcmp(A.x - B.x) == 0&& dcmp(A.y - B.y) == 0; } double Dot(Vector A,Vector B){//向量的点乘 return A.x * B.x + A.y * B.y; } double Length(Vector A){//向量的模 return sqrt(Dot(A,A)); } double Angle(Vector A,Vector B){//向量的夹角 return acos(Dot(A,B) / Length(A) / Length(B)); } double Cross(Vector A,Vector B){//向量的叉积 return A.x * B.y - A.y * B.x; } double Area2(Point A,Point B,Point C){//三角形面积 return Cross(B - A,C - A); } Vector Rotate(Vector A,double rad){//向量的旋转 return Vector(A.x * cos(rad) - A.y * sin(rad),A.x * sin(rad) + A.y * cos(rad)); } Vector Normal(Vector A){//法向量 int L = Length(A); return Vector(-A.y / L,A.x / L); } double DistanceToLine(Point p,Point A,Point B){//p到直线AB的距离 Vector v1 = B - A,v2 = p - A; return fabs(Cross(v1,v2)) / Length(v1); } double DistanceToSegment(Point p,Point A,Point B){//p到线段AB的距离 if (A == B) return Length(p - A); Vector v1 = B - A, v2 = p - A,v3 = p - B; if (dcmp(Dot(v1,v2) < 0)) return Length(v2); else if (dcmp(Dot(v1,v3)) > 0) return Length(v3); else return DistanceToLine(p,A,B); } bool SegmentProperIntersection(Point A1,Point A2,Point B1,Point B2){//线段相交 double c1 = Cross(A2 - A1,B1 - A1),c2 = Cross(A2 - A1,B2 - A1); double c3 = Cross(B2 - B1,A1 - B1),c4 = Cross(B2 - B1,A2 - B1); return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0; } const int N = 77; int A[N], B[N]; int n; struct KM { int n, m; int g[N][N]; int Lx[N], Ly[N], slack[N]; int right[N], left[N]; bool S[N], T[N]; void Initation(int n,int m) { this->n = n,this->m = m; memset(g, 0,sizeof g); } void Addedge(int u,int v,int w) { g[u][v] += w; } void updata() { int a = INF; for (int i = 1;i <= m;++i) if (!T[i]) a = min(a, slack[i]); for (int i = 1;i <= n;++i) if (S[i]) Lx[i] -= a; for (int i = 1;i <= m;++i) if (T[i]) Ly[i] += a; } bool Search(int u) { S[u] = true; for (int i = 1;i <= m;++i) { if (T[i]) continue; int tmp = Lx[u] + Ly[i] - g[u][i]; if (!tmp) { T[i] = true; if (left[i] == -1 || Search(left[i])) { left[i] = u; right[u] = i; return true; } }else slack[i] = min(tmp, slack[i]); } return false; } int km() { memset(right, -1,sizeof right); memset(left, -1,sizeof left); memset(Ly, 0,sizeof Ly); for (int i = 1;i <= n;++i) { Lx[i] = -INF; for (int j = 1;j <= n;++j) Lx[i] = max(Lx[i], g[i][j]); } for (int i = 1;i <= n;++i) { memset(slack, INF,sizeof slack); while (true) { memset(S, false,sizeof S); memset(T, false,sizeof T); if (Search(i)) break; updata(); } } int ret = 0; for (int i = 1;i <= n;++i) ret += g[i][right[i]]; return ret; } }km; inline void Input() { scanf("%d",&n); for (int i = 1;i <= n;++i) scanf("%d",&A[i]); for (int i = 1;i <= n;++i) scanf("%d",&B[i]); } inline void Initation() { km.Initation(n, n); for (int i = 1;i <= n;++i) { for (int j = 1;j <= n;++j) { if (A[i] > B[j]) km.Addedge(i, j, 2); else if (A[i] == B[j]) km.Addedge(i, j, 1); else km.Addedge(i, j, 0); } } } int main() { // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); int t, icase = 0; scanf("%d",&t); while (t--) { Input(); Initation(); printf("Case %d: %d\n", ++icase, km.km()); } return 0; }