主要有二叉树,线索二叉树,AVL树,哈夫曼二叉树,二叉查找树(查找那一篇已发,这里不再重复)

二叉树:

//头文件 :
template<class T>
class TreeNode //采用左孩子,右兄弟的链式方式存储
{
 private:
  T data;
  TreeNode<T> *firstChild, *nextBrother;
 public:
  TreeNode (T value = 0, TreeNode<T> *L = NULL, TreeNode<T> *R = NULL):data(value), firstChild(L), nextBrother(R){}
  TreeNode<T> *GetFirstChild()const {return firstChild;}
  void SetFirstChild(TreeNode<T> *t) {firstChild = t;}
  TreeNode<T> *GetNextBrother() const{return nextBrother;}
  void SetNextBrother(TreeNode<T> *t) {nextBrother = t;}
  T &GetData() {return data;}
  void SetData(const T &item){data = item;}
};
template<class T>
class Tree
{
 private:
  TreeNode<T> *root;
  T stop;
 public:
  Tree() {root = NULL;}
  TreeNode<T> *FindTarget(TreeNode<T> *t, T target);
  TreeNode<T> *FindFather(TreeNode<T> *t, TreeNode<T> *p);
  TreeNode<T> *FirstChild(TreeNode<T> *p);
  TreeNode<T> *NextBrother(TreeNode<T> *p);
  void DelSubTree(TreeNode<T> *t, TreeNode<T> *p);
  void Del(TreeNode<T> *p);
  void PreOder(TreeNode<T> *t);
  void NorecPreOrder(TreeNode<T> *t);
  void LevelOrder(TreeNode<T> *t);
  T GetStop() {return stop;}
  void SetStop(T tostop) {stop = tostop;}
  TreeNode<T> *GetRoot() {return root;}
  void SetRoot(TreeNode<T> *t) {root = t;}
  TreeNode<T> *Create();
  void CreateTree(T stop);
   
};
//源文件:
#include "TreeNode.h"
template<class T>
TreeNode<T> * Tree<T>::FindTarget(TreeNode<T> *t, T target)
{
 if (t == NULL) return NULL;
 TreeNode<T> *result = NULL;
 if ((t->GetData()) == target) result t;
 else
 {
  TreeNode<T> *p = t->GetFirstChild();
  int i = 0;
  while(p != NULL && (result = FindTarget()) == NULL)
   p = p->GetNextBrother();
  return result; 
 }
};
template<class T>
TreeNode<T> *Tree<T>::FindFather(TreeNode<T> *t, TreeNode<T> *p)
{
 if (t == NULL) return NULL;
 TreeNode<T> *result = NULL;
 TreeNode<T> *q = t->GetFirstChild();
 while(q != NULL && q != p)
 {
  result = FindFather(q, p);
  if (!result) q = q->GetNextBrother();
  else
   return result; 
 }
 if (q == p) result t;
 else 
  return NULL;
};
template<class T>
TreeNode<T> *Tree<T>::FirstChild(TreeNode<T> *p)
{
 if (p != NULL && (p = p->GetFirstChild()) != NULL)
  return p->GetFirstChild();
 return NULL;
};
template<class T>
TreeNode<T> *Tree<T>::NextBrother(TreeNode<T> *p)
{
 if (p != NULL && (p = p->GetNextBrother()) != NULL)
  return p->GetNextBrother();
 return NULL;
};
template<class T>
void Tree<T>::DelSubTree(TreeNode<T> *t, TreeNode<T> *p)
{
 if ( t != NULL && p != NULL)
 {
  TreeNode<T> *q = NULL, *result = NULL;
  result = FindFather(t, p);
  if (result)
  {
   if ((result->GetFirstChild()) == p)
   {
    result->SetFirstChild(p->GetNextBrother());
    Del(p);
    return;
   }
   else
   {
    q = result->GetFirstChild();
    while((q->GetNextBrother()) != p) q = q->GetNextBrother();
    q->SetNextBrother(p->GetNextBrother());
    Del(p);
    return;
   }
  }
  else
  {
   Del(p);
   root = NULL;
  }
 }
};
template<class T>
void Tree<T>::Del(TreeNode<T> *p)
{
 if ( p != NULL)
 {
  TreeNode<T> *q = p->GetFirstChild(), *next;
  while(q != NULL)
  {
   next = q->GetNextBrother();
   Del(q);
   q = next;
  }
  delete p;
 }
};
template<class T>
void Tree<T>::PreOder(TreeNode<T> *t)
{
 if (t != NULL)
 {
  cout<<t->GetData()<<endl;
  TreeNode<T> *child = NULL;
  child = FirstChild(t);
  while(child)
  {
   PreOder(child);
   child = NextBrother(child);
  }
 }
};
template<class T>
void Tree<T>::NorecPreOrder(TreeNode<T> *t)
{
 if (t == NULL) return;
 AStack<TreeNode<T>*> s;
 int i;
 TreeNode<T> *p = t;
 do 
 {
  while(p != NULL)
  {
   cout<<p->GetData()<<endl;
   s.Push(p);
   p = FirstChild(p);
  }
  while(p == NULL && s.IsEmpty())
  {
   s.Pop(p);
   p = NextBrother(p);
  }
 } while (!s.IsEmpty());
}
template<class T>
void Tree<T>::LevelOrder(TreeNode<T> *t)
{
 AQueue<TreeNode<T> *> q;
 if (t != NULL)
 {
  TreeNode<T> *p;
  q.QInsert(t);
  while(!q.isEmpty())
  {
   q.QDelete(p);
   cout<<p->GetData()<<endl;
   p = FirstChild(p);
   while(p != NULL)
   {
    q.QInsert(p);
    p = NextBrother(p);
   }
  }
 }
};
template<class T>
TreeNode<T> *Tree<T>::Create()
{
};
template<class T>
void Tree<T>::CreateTree(T stop)
{
};

//线索二叉树:
//头文件:
template<class T>
class ThreadNode
{
 private:
  int LThread, RThread; //1为线索 0为左孩子
  ThreadNode<T> *left;
  ThreadNode<T> *right;
  T data;
 public:
  ThreadNode(const T item):data(item), left(NULL), right(NULL), LThread(0), RThread(0){}
  ThreadNode<T> *GetLeft(void) const{return left;}
  void SetLeft(ThreadNode<T> *t){left = t;}
  ThreadNode<T> *GetRight(void) const{return right;}
  void SetRight(ThreadNode<T> *t){right = t;}
  
  T &GetData(){return data;}
  void SetData(const T &item) {data = item;}
  void SetLThread(const int d){LThread = d;}
  int GetLThread() {return LThread;}
  void SetRThread(const int d){RThread = d;}
  int GetRThread() {return RThread;}   
};
template<class T>
class ThreadInTree //中序线索二叉树
{
 private:
  ThreadNode<T> *root;
  T stop;
  ThreadNode<T> *pre;
 public:
  ThreadInTree(ThreadNode<T> *t){root = t;}
  ThreadNode<T> *FIO(ThreadNode<T> *t); //返回中序线索二叉树t的中根序列的第一个结点
  ThreadNode<T> *LIO(ThreadNode<T> *t); //返回中序线索二叉树t的中根序列的最后一个结点
  ThreadNode<T> *PIO(ThreadNode<T> *t, ThreadNode<T> *p); //在以t为根结点的中序线索二叉树中搜索结点p的中根前驱结点
  ThreadNode<T> *NIO(ThreadNode<T> *t, ThreadNode<T> *p); //在以t为根结点的中序线索二叉树中搜索结点p的中根后驱结点
  void InOrderOf(ThreadNode<T> *t); //中序遍历以结点t为根结点的中序线索二叉树
  
  void InsertLeft(ThreadNode<T> *p, ThreadNode<T> *s);
  void InsertRight(ThreadNode<T> *p, ThreadNode<T> *s); //插入一个结点p,作为结点s的右结点
  ThreadNode<T> *GetRoot() {return root;}
  void SetRoot(ThreadNode<T> *t) {root = t;}
  T GetStop() {return stop;}
  void SetStop(T tostop) {stop = tostop;}
  void CreatThreadingTree(T tostop);
  ThreadNode<T> *Create();
  void ThreadingTree();
  void InThreading(ThreadNode<T> *t);
  ThreadNode<T> *First() {return FIO(root);}
  ThreadNode<T> *Last() {return LIO(root);}
  void InOrder() {InOrderOf(root);}
  ThreadNode<T> *search(ThreadNode<T> *t, T item);
  void DeleteLeft(ThreadNode<T> *p, ThreadNode<T> *s);
  void DeleteRight(ThreadNode<T> *p, ThreadNode<T> *s); //删除结点s的左子结点p
};
 
//源文件:
#include "ThreadNode.h"
template<class T>
ThreadNode<T> *ThreadInTree<T>::FIO(ThreadNode<T> *t)
{
 if (t == NULL) return NULL;
 
 ThreadNode<T> *q = t;
 while((q->GetLThread()) == 0)
  q = q->GetLeft();
 return q;
}
template<class T>
ThreadNode<T> *ThreadInTree<T>::LIO(ThreadNode<T> *t)
{
 if (t == NULL) return NULL;
 
 ThreadNode<T> *q = t;
 while((q->GetRThread()) == 0)
  q = q->GetRight();
 return q;
}
template<class T>
ThreadNode<T> *ThreadInTree<T>::PIO(ThreadNode<T> *t, ThreadNode<T> *p)
{
 if ( t == NULL || p == NULL) return NULL;
 
 ThreadNode<T> *q;
 if (p == FIO(t)) return NULL;
 
 ThreadNode<T> *rp = p->GetLeft();
 if((p->GetLThread()) == 1) return rp;
 q = LIO(rp);
 
 return q;
 
}
template<class T>
ThreadNode<T> *ThreadInTree<T>::NIO(ThreadNode<T> *t, ThreadNode<T> *p)
{
 if ( t == NULL || p == NULL) return NULL;
 
 ThreadNode<T> *q;
 if (p == LIO(t)) return NULL;
 
 ThreadNode<T> *rp = p->GetRight();
 if((p->GetRThread()) == 1) return rp;
 q = FIO(rp);
 
 return q;
}
template<class T>
void ThreadInTree<T>::InOrderOf(ThreadNode<T> *t)
{
 if (t == NULL) return;
 ThreadNode<T> *q;
 for (q = FIO(t); q != NULL; q = NIO(t, q))
  cout<<q->GetData()<<endl; 
}
template<class T>
void ThreadInTree<T>::InsertRight(ThreadNode<T> *p, ThreadNode<T> *s)
{
 if ( p == NULL || s == NULL) return NULL;
 p->SetRight(s->GetRight());
 p->SetRThread(s->GetRThread());
 p->SetLeft(s);
 p->SetLThread(1);
 
 s->SetRight(p);
 s->SetRThread(0);
 if ((s->GetRThread()) == 0)
 {
  ThreadNode<T> *q = p->GetRight();
  q = FIO(q);
  q->SetLeft(p);
 } 
}
//AVL树:
//头文件: 

template<class T>
class AVLNode
{
 public:
  T key;
  AVLNode<T> *llink;
  AVLNode<T> *rlink;
  int balance;
  int RANK;
  AVLNode(const T &item, AVLNode<T> *lptr = NULL, AVLNode<T> *rptr = NULL):key(item), llink(lptr), rlink(rptr), balance(0){}  
};
template<class T>
class AVLTree
{
 private:
  AVLNode<T> *head;
  T stop;
  AVLNode<T> **link(int a, AVLNode<T> *p);
 public:
  AVLTree();
  AVLNode<T> *Search_Insert(T k);
  AVLNode<T> *SearchByPos(int k);
  void InsertByPos(int k, AVLNode<T> *q);
  AVLNode<T> *GetRoot() {return head->rlink;}
  void InOrder(AVLNode<T> *t) const;
  T GetStop() {return stop;}
  void SetStop(T tostop) {stop = tostop;}
};
//源文件:
#include "AVLNode.h"
template<class T>
AVLNode<T> ** AVLTree<T>::link(int a, AVLNode<T> *p)
{
 if (a == -1) return (&(p->llink));
 if (a == 1) return (&(p->rlink));
 return NULL;
};
template<class T>
AVLNode<T> *AVLTree<T>::Search_Insert(T k)
{
 int a;
 AVLNode<T> *t = head;
 AVLNode<T> *s = head->rlink;
 AVLNode<T> *p = head->rlink;
 AVLNode<T> *q;
 if (s == NULL)
 {
  q = new AVLNode<T>(k);
  head->rlink = q;
  head->llink = 0;
  return NULL;
 }
 while(true)
 {
  if (k == p->key) return p;
  if(k < p->key)
  {
   q = p->llink;
   if (q == NULL)
   {
    q = new AVLNode<T>(k);
    p->llink = q;
    break;
   }
   else
   {
    if (q->balance != 0)
    {
     t = p;
     s = q;
    }
    p = q;
   }
  }
  else
  {
   q = p->rlink;
   if (q == NULL)
   {
    q = new AVLNode<T>(k);
    p->rlink = q;
    break;
   }
   else
   {
    if (q->balance != 0)
    {
     t = p;
     s = q;
    }
    p = q;
   }
  }
 }
 //插入完成,下面调整平衡系数
 if (k < s->key) a = -1;
 else a = 1;
 AVLNode<T> *r = *link(a, s); 
 p = r;
 while(p != q)
 {
  if (k < p->key)
  {
   p->balance = -1;
   p = p->llink;
  }
  if (k > p->key)
  {
   p->balance = 1;
   p = p->rlink;
  }
 }
 if (s->balance == 0)
 {
  s->balance = a;
  head->llink = head->llink+1;
  return NULL;
 }
 else if(s->balance == -a)
 {
  s->balance = 0;
  return NULL;
 }
 else if (s->balance == a)
 {
  if (r->balance == a)
  {
   p = r;
   *link(a, s) = *link(-a, r);
   *link(-a, r) = s;
   s->balance = 0;
   r->balance = 0;
  }
  else if (r->balance == -a)
  {
   p = *link(-a, r);
   *link(a, r) = *link(a, p);
   *link(a, p) = r;
   *link(a, s) = *link(-a, p);
   *link(-a, p) = s;
   if (p->balance == a)
   {
    s->balance = -a;
    r->balance = 0;
   }
   if (p->balance == 0)
   {
    s->balance = 0;
    r->balance = 0;    
   }
   if (p->balance == -a)
   {
    s->balance = 0;
    r->balance = a;
   }
   p->balance = 0;
  }
  if (s == t->rlink) t->rlink = p;
  else t->llink = p;
 }
 return NULL;
};
template<class T>
AVLNode<T> *AVLTree<T>::SearchByPos(int k)
{
 int m = k;
 AVLNode<T> *p = head->rlink;
 while()
 {
  if(m == p->RANK)return p;
  else if (m < p->RANK) p = p->llink;
  else 
  {
   m -= p->RANK;
   p = p->rlink;
  }
 }
 return NULL;
};
template<class T>
void AVLTree<T>::InsertByPos(int k, AVLNode<T> *q)
{
 AVLNode<T> *t = head;
 AVLNode<T> *s = head->rlink;
 AVLNode<T> *p = head->rlink;
 AVLNode<T> *r;
 int a;
 int u, m;
 u = k;
 m = k;
 while(true)
 {
  if (m <= p->RANK)
  {
   p->RANK ++;
   r = p->llink;
   if (r == NULL)
   {
    p->llink = q;
    break;
   }
   else
   {
    if (r->balance != 0)
    {
     t = p;
     s = r;
     u = m;
    }
    p = r;
   }
  }
  else
  {
    m -= p->RANK;
    r = p->rlink;
    if (r == NULL)
    {
     p->rlink = q;
     break;
    }
    else
    {
     if (r->balance != 0)
     {
      t = p;
      s = r;
      u = m;
     }
     p = r;
    }
  }
 }
 //插入
 q->RANK = 1;
 q->llink = NULL;
 q->rlink = NULL;
 q->balance = 0;
 //调整平衡系数
 m = u;
 if (m < s->RANK)
 {
  r = s->llink;
  p = r;
  a = -1;
 }
 else
 {
  r = s->rlink;
  p = r;
  a = 1;
  m -= s->RANK;
 }
 while(p != q)
 {
  if (m < p->RANK)
  {
   p->balance = -1;
   p = p->llink;
  }
  if(m > p->RANK)
  {
   p->balance = 1;
   m -= p->RANK;
   p = p->rlink;
  }
 }
 if (s->balance == 0)
 {
  s->balance = a;
  head->llink = head->llink + 1;
  return;
 }
 if(s->balance == -a)
 {
  s->balance = 0;
  return;
 }
 if (s->balance == a)
 {
  if(r->balance == a)
  {
   p = r;
   *link(a, s) = *link(-a, r);
   *link(-a, s) = s;
   s->balance = 0;
   r->balance = 0;
   //update value of RANk
   if(a == 1)r->RANK = r->RANK + s->RANK;
   if(a == -1) s->RANK = s->RANK - r->RANK;
  }
  else if (r->balance == -a)
  {
   p = *link(-a, p);
   *link(a, r) = *link(a, p);
   *link(a, p) = r;
   *link(a, s) = *link(-a, p);
   *link(-a, p) = s;
   if (p->balance == a)
   {
    s->balance = -a;
    r->balance = 0;
   }
   if (p->balance == 0)
   {
    s->balance = 0;
    r->balance = 0;
   }
   if (p->balance == a)
   {
    s->balance = 0;
    r->balance = -a;
   }
   p->balance = 0;
   if(a == 1)
   {
    r->RANK = r->RANK - p->RANK;
    p->RANK = p->RANK - s->RANK;
   }
   if(a == -1)
   {
    p->RANK = p->RANK + r->RANK;
    s->RANK = s->RANK - p->RANK;
   }
  }
  if(s == t->rlink)t->rlink = p;
  else t->llink = p;
 }
}; 
//哈夫曼二叉树:
//头文件: 

template<class T>
class HuffmanNode
{
 private:
  HuffmanNode<T> *left;
  HuffmanNode<T> *right;
  T data;
  int weight;
 public:
  HuffmanNode(const T &item, HuffmanNode<T> *lptr = NULL, HuffmanNode<T> *rptr = NULL):data(item),left(lptr),right(rptr),weight(0){}
  HuffmanNode<T> *GetLeft(void) const {return left;}
  void SetLeft(HuffmanNode<T> *L) {left = L;}
  HuffmanNode<T> *Getright(void) const{return right;}
  void SetRight(HuffmanNode<T> *R) {right = R;}
  T &GetData() {return data;}
  void SetData(const T &item) {data = item;}
  int GetWeight() {return weight;}
  void SetWeight(const int w){weight = w;}
};
const int m = 20;
template<class T>
class HuffmanTree
{
 private:
  HuffmanNode<T> *root;
  T data[m];
  int weight[m];
  
 public:
  HuffmanTree(HuffmanNode<T> *t = NULL):root(t){}
  void CreateHuffmanTree();
  HuffmanNode<T> *GetRoot() {return root;}
  void SetRoot(HuffmanNode<T> *t) {root = t;}
  void InputNodes();
};
//源文件:
#include "HuffmanTree.h"
template<class T>
void HuffmanTree<T>::CreateHuffmanTree()
{
 InputNodes();
 HuffmanNode<T> *H[m];
 HuffmanNode<T> *p1 = NULL, *p2 = NULL, *p, *t;
 int i = 0, j = 0;
 for (; i < m ; i ++)
 {
  H[i] = new HuffmanNode<T>(0);
  H[i]->SetData(data[i]);
  H[i]->SetWeight(weight[i]);
  H[i]->SetLeft(NULL);
  H[i]->SetRight(NULL);
 }
 for (i = 0; i < m-1; i ++)
 {
  t = new HuffmanNode<T>(0);
  p1 = H[i];
  p2 = H[i+1];
  t->SetWeight(p1->GetWeight() + p2->GetWeight());
  t->SetLeft(p1);
  t->SetRight(p2);
  p = t;
  j = i+2;
  while(j < m && (p->GetWeight()) > (H[i]->GetWeight()))
  {
   H[i-1] = H[j];
   j ++;
  }
  H[j-1] = p;
  root = H[m-1];
 }
}


你可能感兴趣的:(树)