hdu 5006 Resistance (高斯消元,0 0!)

题意:

一些导线连接一些点,导线的电阻只有0和1.求S和T的等效电阻。

题解:

这题给re跪了,不过思路应该不会错,注意高斯消元的姿势。首先对于0电阻的这导线显然无法直接用高斯消元,先度这些点缩点,0电阻的缩成一个点,接着就可以根绝高斯消元列方程了。555

#include<iostream>
#include<math.h>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<string>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<stack>
#define B(x) (1<<(x))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned ui;
const int oo = 0x3f3f3f3f;
const ll OO = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-9;
#define lson rt<<1
#define rson rt<<1|1
void cmax(int& a, int b){ if (b > a)a = b; }
void cmin(int& a, int b){ if (b < a)a = b; }
void cmax(ll& a, ll b){ if (b > a)a = b; }
void cmin(ll& a, ll b){ if (b < a)a = b; }
void cmax(double& a, double b){ if (a - b < eps) a = b; }
void cmin(double& a, double b){ if (b - a < eps) a = b; }
void add(int& a, int b, int mod){ a = (a + b) % mod; }
void add(ll& a, ll b, ll mod){ a = (a + b) % mod; }
const ll MOD = 1000000007;
const int maxn = 11000;
double a[1005][1005];
int fa[maxn], id[maxn];
struct line{
	int u, v, c;
}edge[maxn << 2];
int cnt;
double ans;

int find(int x){
	return x == fa[x] ? x : fa[x] = find(fa[x]);
}

void merge(int u, int v){
	int x = find(u);
	int y = find(v);
	if (x != y)
		fa[x] = y;
}

void Gauss(int n, int m){
	int r, c, k;
	for (r = c = 0; r < n && c < m; r++, c++){
		for (k = r; k < n; k++)
		if (fabs(a[k][c]) > eps)
			break;
		if (r == n) continue;
		if (k != r){
			for (int j = 0; j <= m; j++)
				swap(a[k][j], a[r][j]);
		}
		for (int j = c + 1; j <= m; j++)a[r][j] /= a[r][c];
		a[r][c] = 1.0;
		for (int i = 0; i < n; i++){
			if (i == r || fabs(a[i][c]) < eps) continue;
			for (int j = c + 1; j <= m; j++)
				a[i][j] -= a[i][c] * a[r][j];
			a[i][c] = 0.0;
		}
	}
}

void InitFa(int n){
	for (int i = 0; i <= n; i++)
		fa[i] = i;
}

void Init(int n){
	for (int i = 0; i <= n; i++)
	for (int j = 0; j <= n; j++)
		a[i][j] = 0.0;
}

void gao(int n){
	cnt = 0;
	for (int i = 1; i <= n; i++){
		if (find(i) == i) id[i] = cnt++;
	}
	for (int i = 1; i <= n; i++){
		id[i] = id[find(i)];
	}
}

int main(){
	//freopen("E:\\read.txt", "r", stdin);
	int n, m, u, v, c, S, T, cas;
	scanf("%d", &cas);
	while (cas--){
		scanf("%d %d %d %d", &n, &m, &S, &T);
		InitFa(n);
		for (int i = 1; i <= m; i++){
			scanf("%d %d %d", &u, &v, &c);
			edge[i].u = u;
			edge[i].v = v;
			edge[i].c = c;
			if (c == 0) merge(u, v);
		}
		gao(n);
		//缩点后成为一个点,电阻肯定是0
		if (find(S) == find(T)){
			printf("%.6lf\n", 0);
			continue;
		}
		//如果两个点不连通电阻是无穷大
		InitFa(n);
		for (int i = 1; i <= m; i++){
			u = edge[i].u;
			v = edge[i].v;
			merge(u, v);
		}
		if (find(S) != find(T)){
			printf("inf\n");
			continue;
		}

		Init(n);
		for (int i = 1; i <= m; i++){
			u = id[edge[i].u];
			v = id[edge[i].v];
			c = edge[i].c;
			if (u == v) continue;
			a[u][v] -= 1.0;
			a[u][u] += 1.0;
			a[v][u] -= 1.0;
			a[v][v] += 1.0;
		}
		S = id[S];
		T = id[T];
		a[S][cnt] = 1.0;
		a[T][cnt] = -1.0;
		a[cnt - 1][S] = 1;
		Gauss(cnt, cnt);
		printf("%.6lf\n", a[S][cnt] / a[S][S] - a[T][cnt] / a[T][T]);
	}
	return 0;
}



你可能感兴趣的:(hdu 5006 Resistance (高斯消元,0 0!))