让 x∈χ , y∈{−1,1} 并且 h∈H 分别表示我们问题中的输入、输出和隐变量。在我们的上下文中,x、y、h对应的是一幅图片、它的标签和一个窗口(或是bounding box)。接下来的设定在[1]中,我们在一个联合输入/输出/隐变量空间 O 中考虑一个线性的预测规则。我们定一个一个输入/输出/隐变量映射 Φ(x,y,h)∈X×Y×H→O⊂Rd 这样
这里 0→ 是d维的0向量并且 Φ(x,h) 是表示从图像 x 截取的窗口 h 的表示。例如,在我们实验中具有4096维的DeCAF特征[2]。
预测
对于训练样本的经验损失用一个附加的2范数表示
soft-max function
% matlab code
% define objective function
% featTrain.x
% [0.6303411;-0.7763183;1](1个)
% [0.8341424,0.4734712;0.5515491,0.8808093;1,1](2)
% [-0.4017371,-0.9285000,-0.2376855;-0.9157550,-0.3713324,-0.9713422;1,1,1](3)
% [0.8490803,0.8840563,0.9590592;0.5282639,0.4673803,0.2832058;1,1,1](3)
% [0.7834677;-0.6214325;1](1)
% [-0.5194708,-0.1672711,-0.6840945;-0.8544882,-0.9859110,-0.7293934;1,1,1](3)
% [-0.5074486,-0.6840267,-0.8343239;-0.8616820,-0.7294570,-0.5512746;1,1,1](3)
% [0.4799071,0.6633653,0.4913931;0.8773193,0.7482957,0.8709378;1,1,1](3)
% [0.8006670,0.9598586;0.5991096,0.2804843;1,1](2)
% [0.6355712,0.8618172;0.7720423,0.5072189;1,1](2)
%
% labelTrain
% -1 1 -1 1 1 -1 -1 1 1 1
% lambda = single(1e-5);
% beta = single(1)
funObj = @(w)SLSVMLossC2(w,featTrain,labelTrain,lambda,beta);
% matlab中的变量对应的SLSVMLossC2.c文件中的变量
% matlab : C
% w -> w
% featTrain -> tmp
% labelTrain -> y
% lambda ->lambda=
% beta -> beta=1
% nfields 是特征的个数
% /* get input arguments */
% 获得结构体阵列的域的数量
% nfields(=1) = mxGetNumberOfFields(prhs[1]);
% 获得阵列中元素的个数。
% NStructElems(=10) = mxGetNumberOfElements(prhs[1]);
% nImags=10 是标签的个数,即图像的个数
% nVars=3 是权值(w)的个数
% learn soft-max latent svm vector
W = minFunc(funObj,W0,options);
/* Hakan Bilen * August 5, 2015 * * Implementation of soft-max latent SVM in * "Weakly Supervised Object Detection with Posterior Regularization" in * BMVC 2014. * * Warning : posterior regularization for symmetry and mutual exclusion are * not implemented in this file! * 该代码一共有两个返回量 * f:惩罚 * g:梯度 */
#include <math.h>
#include <limits.h>
#include <omp.h>
#include "mex.h"
/* This function may not exit gracefully on bad input! */
float myLogSumExp(const float * vec, int dim) ;
void computeProb(const float * in, int dim, float * out) ;
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
/* Variable Declarations */
double *w, f, *g, *y;
int nVars, nImgs;
float lambda, beta;
float lpos2neg,lneg2pos;
/* Get Input Pointers */
w = mxGetPr(prhs[0]);
y = mxGetPr(prhs[2]);
lambda = mxGetScalar(prhs[3]);
beta = mxGetScalar(prhs[4]);
float np = 0;
float nn = 0;
nImgs = (int)mxGetNumberOfElements(prhs[2]);
nVars = (int)mxGetNumberOfElements(prhs[0]);
int ifield, nfields;
mwIndex jstruct;
mwSize NStructElems;
mwSize ndim;
if(!mxIsStruct(prhs[1]))
mexErrMsgIdAndTxt( "MATLAB:SLSVMC2:inputNotStruct",
"Input must be a structure.");
/* get input arguments */
nfields = mxGetNumberOfFields(prhs[1]);
NStructElems = mxGetNumberOfElements(prhs[1]);
if (NStructElems!=nImgs)
mexErrMsgIdAndTxt( "MATLAB:SLSVMC2:WrongNumImgs",
"Wrong number of images!");
/*number of features (boxes) for each image */
int * nBoxes = mxCalloc(nImgs,sizeof(int));
int * cumNBoxes = mxCalloc(nImgs+1,sizeof(int));
cumNBoxes[0] = 0;
int i,b,d;
for(i=1;i<=nImgs;i++) {
const mxArray *tmp = mxGetFieldByNumber(prhs[1], i-1, 0);
if(tmp == NULL) {
mexPrintf("%s%d\t%s%d\n", "FIELD: ", ifield+1, "STRUCT INDEX :", 1);
mexErrMsgIdAndTxt( "MATLAB:data:fieldEmpty",
"Above field is empty!");
}
nBoxes[i-1] = (int)mxGetDimensions(tmp)[1];
//这里是第i个样本中窗口的个数
if (mxGetDimensions(tmp)[0]!=nVars)
mexErrMsgIdAndTxt("MATLAB:SLSVMC2:wrongDim","Wrong feature dimensionality!");
cumNBoxes[i] = cumNBoxes[i-1] + nBoxes[i-1];
//这里cumNBoxes是前i个样本中获取总窗口的数量
}
/* mexPrintf("X[0,end] %f\n",X[4096]); mexPrintf("nImgs %d nVars %d\n",nImgs,nVars); mexPrintf("X[2,0] %f\n",X[2*4097]); mexPrintf("X[2,end] %f\n",X[3*4097-1]); */
/* Allocated Memory for Function Variables */
/* plhs[0] = mxCreateDoubleScalar(0); */
plhs[1] = mxCreateDoubleMatrix(nVars,1,mxREAL);
g = mxGetPr(plhs[1]);
float * fs = mxCalloc(nImgs,sizeof(float));
float * gs = mxCalloc(nImgs*nVars,sizeof(float));
/* get number of positives and negatives */
for(i=0;i<nImgs;i++) {
if(y[i]>0) {
np++;
//np是正样本的个数(6)
}
else if(y[i]<0) {
nn++;
//nn是负样本的个数(4)
}
}
if (nn==0 || np==0)
mexErrMsgIdAndTxt( "MATLAB:data:wlabel",
"No pos or neg label!");
/* balanced loss for pos and neg */
lpos2neg = 0.5 * (np+nn) / np;
lneg2pos = 0.5 * (np+nn) / nn;
float ** convProbs = (float **)mxCalloc(nImgs,sizeof(float*));
float ** concProbs = (float **)mxCalloc(nImgs,sizeof(float*));
float ** scores = (float **)mxCalloc(nImgs,sizeof(float*));
float ** augScores = (float **)mxCalloc(nImgs,sizeof(float*));
for(i=0;i<nImgs;i++) {
convProbs[i] = (float *)mxCalloc(2*(int)nBoxes[i],sizeof(float));
concProbs[i] = (float *)mxCalloc((int)nBoxes[i],sizeof(float));
scores[i] = (float *)mxCalloc((int)nBoxes[i],sizeof(float));
augScores[i] = (float *)mxCalloc(2*(int)nBoxes[i],sizeof(float));
}
#pragma omp parallel for schedule(dynamic) private(i)
for(i=0;i<nImgs;i++) {
if(y[i]==0)
continue;
const mxArray *tmp = mxGetFieldByNumber(prhs[1], i, 0);
if(tmp == NULL) {
mexPrintf("%s%d\t%s%d\n", "FIELD: ", ifield+1, "STRUCT INDEX :", 1);
mexErrMsgIdAndTxt( "MATLAB:data:fieldEmpty",
"Above field is empty!");
}
const float * x = (float *)mxGetData(tmp);
//应该是获取第i幅图像的窗口数量
int nB = (int)nBoxes[i];
if((int)mxGetDimensions(tmp)[1]!=nB)
mexErrMsgIdAndTxt("MATLAB:SLSVMC2:empty","mxGetDimensions(tmp)[1]!=nB");
if(nB==0)
mexErrMsgIdAndTxt("MATLAB:SLSVMC2:zeroval","zero num bb");
if (mxGetDimensions(tmp)[0]!=nVars)
mexErrMsgIdAndTxt("MATLAB:SLSVMC2:wrongdim","wrong feat dim");
/* mexPrintf("y[%d] = %f nB %d\n",i,y[i],nB); */
float concScore = 0;
int b, d;
for(b=0;b<nB;b++) {
for(d=0;d<nVars;d++) {
//对每个窗口进行得分相加
scores[i][b] += (float)w[d] * x[nVars*b+d];
}
//计算第i幅图像的第b个窗口的得分
scores[i][b] *= beta;
}
//凹的部分
/* concave part */
if(y[i]>0) {
concScore = myLogSumExp(scores[i],nB);
computeProb(scores[i],nB,concProbs[i]);
}
else if(y[i]<0) {
concScore = logf((float)nB);
for(b=0;b<nB;b++) {
concProbs[i][b] = 0;
}
}
else {
mexErrMsgIdAndTxt("MATLAB:SLSVMC2:wlabel","wrong label");
}
//凸的部分
/* convex part */
if(y[i]>0) {
for(b=0;b<nB;b++) {
augScores[i][b] = scores[i][b];
augScores[i][b+nB] = beta * lpos2neg;
}
}
else if(y[i]<0) {
for(b=0;b<nB;b++) {
augScores[i][b] = scores[i][b] + beta * lneg2pos;
augScores[i][b+nB] = 0;
}
}
else {
mexErrMsgIdAndTxt("MATLAB:SLSVMC2:wlabel","wrong label");
}
computeProb(augScores[i],2*nB,convProbs[i]);
for(b=0;b<nB;b++) {
float difp = (convProbs[i][b]-concProbs[i][b]);
for(d=0;d<nVars;d++) {
gs[i*nVars + d] += x[nVars*b+d] * difp;
}
}
float convScore = myLogSumExp(augScores[i],2*nB);
fs[i] = convScore - concScore;
}
for(i=0;i<nImgs;i++) {
mxFree(augScores[i]);
mxFree(scores[i]);
mxFree(convProbs[i]);
mxFree(concProbs[i]);
}
mxFree(augScores);
mxFree(scores);
mxFree(convProbs);
mxFree(concProbs);
/* sum objval and grads over all images */
for(i=0;i<nImgs;i++) {
if(y[i]==0)
continue;
f += fs[i];
for(d=0;d<nVars;d++) {
g[d] += gs[i*nVars+d];
}
}
for(d=0;d<nVars;d++) {
g[d] /= (nn+np);
}
f /= beta * (nn+np);
/* add regularization */
for(d=0;d<nVars-1;d++) {
f += 0.5 * lambda * w[d] * w[d] ;
}
for(d=0;d<nVars-1;d++) {
g[d] += lambda * w[d] ;
}
mxFree(cumNBoxes);
mxFree(nBoxes);
mxFree(gs);
mxFree(fs);
/* mxFree(gconcProbs); mxFree(gconvProbs); mxFree(gscores); mxFree(gaugScores); */
plhs[0] = mxCreateDoubleScalar(f);
}
/*---------------------------------------------------------------------------*/
float myLogSumExp(const float * vec, int dim) {
float maxScore = -FLT_MAX ;
int i=0;
for (i=0;i<dim;i++) {
if(maxScore<vec[i])
maxScore = vec[i];
}
float sumScore = 0.f;
for (i=0;i<dim;i++) {
sumScore += expf(vec[i]-maxScore);
}
return logf(sumScore)+maxScore;
}
/*---------------------------------------------------------------------------*/
void computeProb(const float * in, int dim, float * out) {
float maxScore = -FLT_MAX ;
int i=0;
for (i=0;i<dim;i++) {
if(maxScore<in[i])
maxScore = in[i];
}
//获取当前图片中的最大得分记为maxScore
float sumExp = 0.f;
for (i=0;i<dim;i++) {
sumExp += expf(in[i]-maxScore);
}
mxAssert(sumExp>0.f,"");
const float rSumExp = 1.f / sumExp;
for (i=0;i<dim;i++) {
out[i] = expf(in[i]-maxScore) * rSumExp;
}
}
[1] C. John Yu and T. Joachims. Learning structural svms with latent variables. In ICML, pages 1169–1176, 2009.
[2] Chaitanya Desai, Deva Ramanan, and Charless C Fowlkes. Discriminative models for multi-class object layout. International journal of computer vision, 95(1):1–12, 201