Latent Structural SVM

隐结构SVM(Latent Structural SVM)

xχ y{1,1} 并且 hH 分别表示我们问题中的输入、输出和隐变量。在我们的上下文中,x、y、h对应的是一幅图片、它的标签和一个窗口(或是bounding box)。接下来的设定在[1]中,我们在一个联合输入/输出/隐变量空间 O 中考虑一个线性的预测规则。我们定一个一个输入/输出/隐变量映射 Φ(x,y,h)X×Y×HORd 这样

Φ(x,y,h)={0χ(x,h)ifify0y>0

这里 0 是d维的0向量并且 Φ(x,h) 是表示从图像 x 截取的窗口 h 的表示。例如,在我们实验中具有4096维的DeCAF特征[2]。

预测

y$=argmaxyY(maxhHwΦ(x,y,h)).

对于训练样本的经验损失用一个附加的2范数表示

L(w;S;λ)=12λw2+i=1nl(w,xi,yi)

max-margin function
lm(w,xi,yi)=maxy,h(wΦ(wi,y,h)+Δ(yiy))maxhwwΦ(xi,yi,h)

soft-max function

ls(w,xi,yi)=logy,hexp(wΦ(xi,y,h)+Δ(yi,y))loghexp(wΦ(xi,yi,h))

% matlab code
% define objective function
% featTrain.x
% [0.6303411;-0.7763183;1](1个)
% [0.8341424,0.4734712;0.5515491,0.8808093;1,1](2)
% [-0.4017371,-0.9285000,-0.2376855;-0.9157550,-0.3713324,-0.9713422;1,1,1](3)
% [0.8490803,0.8840563,0.9590592;0.5282639,0.4673803,0.2832058;1,1,1](3)
% [0.7834677;-0.6214325;1](1)
% [-0.5194708,-0.1672711,-0.6840945;-0.8544882,-0.9859110,-0.7293934;1,1,1](3)
% [-0.5074486,-0.6840267,-0.8343239;-0.8616820,-0.7294570,-0.5512746;1,1,1](3)
% [0.4799071,0.6633653,0.4913931;0.8773193,0.7482957,0.8709378;1,1,1](3)
% [0.8006670,0.9598586;0.5991096,0.2804843;1,1](2)
% [0.6355712,0.8618172;0.7720423,0.5072189;1,1](2)
% 
% labelTrain
% -1 1 -1 1 1 -1 -1 1 1 1
% lambda = single(1e-5);
% beta = single(1)

funObj = @(w)SLSVMLossC2(w,featTrain,labelTrain,lambda,beta);
% matlab中的变量对应的SLSVMLossC2.c文件中的变量 
% matlab : C
% w -> w
% featTrain -> tmp
% labelTrain -> y
% lambda ->lambda=
% beta -> beta=1
% nfields 是特征的个数
% /* get input arguments */
% 获得结构体阵列的域的数量
% nfields(=1) = mxGetNumberOfFields(prhs[1]);
% 获得阵列中元素的个数。
% NStructElems(=10) = mxGetNumberOfElements(prhs[1]);
% nImags=10 是标签的个数,即图像的个数
% nVars=3 是权值(w)的个数
% learn soft-max latent svm vector
W = minFunc(funObj,W0,options);
/* Hakan Bilen * August 5, 2015 * * Implementation of soft-max latent SVM in * "Weakly Supervised Object Detection with Posterior Regularization" in * BMVC 2014. * * Warning : posterior regularization for symmetry and mutual exclusion are * not implemented in this file! * 该代码一共有两个返回量 * f:惩罚 * g:梯度 */


#include <math.h>
#include <limits.h>
#include <omp.h>
#include "mex.h"

/* This function may not exit gracefully on bad input! */

float myLogSumExp(const float * vec, int dim) ;
void computeProb(const float * in, int dim, float * out) ;

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
  /* Variable Declarations */

  double *w, f, *g, *y;
  int nVars, nImgs;
  float lambda, beta;
  float lpos2neg,lneg2pos;

  /* Get Input Pointers */
  w      = mxGetPr(prhs[0]);
  y      = mxGetPr(prhs[2]);
  lambda = mxGetScalar(prhs[3]);
  beta   = mxGetScalar(prhs[4]);

  float np = 0;
  float nn = 0;

  nImgs = (int)mxGetNumberOfElements(prhs[2]);
  nVars = (int)mxGetNumberOfElements(prhs[0]);

  int        ifield, nfields;
  mwIndex    jstruct;
  mwSize     NStructElems;
  mwSize     ndim;

  if(!mxIsStruct(prhs[1]))
    mexErrMsgIdAndTxt( "MATLAB:SLSVMC2:inputNotStruct",
            "Input must be a structure.");

  /* get input arguments */
  nfields = mxGetNumberOfFields(prhs[1]);
  NStructElems = mxGetNumberOfElements(prhs[1]);

  if (NStructElems!=nImgs)
        mexErrMsgIdAndTxt( "MATLAB:SLSVMC2:WrongNumImgs",
            "Wrong number of images!");

  /*number of features (boxes) for each image */
  int * nBoxes = mxCalloc(nImgs,sizeof(int));
  int * cumNBoxes = mxCalloc(nImgs+1,sizeof(int));
  cumNBoxes[0] = 0;

  int i,b,d;
  for(i=1;i<=nImgs;i++) {
    const mxArray *tmp = mxGetFieldByNumber(prhs[1], i-1, 0);
    if(tmp == NULL) {
      mexPrintf("%s%d\t%s%d\n", "FIELD: ", ifield+1, "STRUCT INDEX :", 1);
      mexErrMsgIdAndTxt( "MATLAB:data:fieldEmpty",
              "Above field is empty!");
    }
    nBoxes[i-1] = (int)mxGetDimensions(tmp)[1];
    //这里是第i个样本中窗口的个数

    if (mxGetDimensions(tmp)[0]!=nVars)
      mexErrMsgIdAndTxt("MATLAB:SLSVMC2:wrongDim","Wrong feature dimensionality!");

    cumNBoxes[i] = cumNBoxes[i-1] + nBoxes[i-1];
    //这里cumNBoxes是前i个样本中获取总窗口的数量
  }  

/* mexPrintf("X[0,end] %f\n",X[4096]); mexPrintf("nImgs %d nVars %d\n",nImgs,nVars); mexPrintf("X[2,0] %f\n",X[2*4097]); mexPrintf("X[2,end] %f\n",X[3*4097-1]); */

  /* Allocated Memory for Function Variables */
/* plhs[0] = mxCreateDoubleScalar(0); */
  plhs[1] = mxCreateDoubleMatrix(nVars,1,mxREAL);
  g = mxGetPr(plhs[1]);

  float * fs = mxCalloc(nImgs,sizeof(float));
  float * gs = mxCalloc(nImgs*nVars,sizeof(float));

  /* get number of positives and negatives */
  for(i=0;i<nImgs;i++) {
    if(y[i]>0) {
      np++;
      //np是正样本的个数(6)
    }
    else if(y[i]<0) {
      nn++;
      //nn是负样本的个数(4)
    }
  }

  if (nn==0 || np==0)
     mexErrMsgIdAndTxt( "MATLAB:data:wlabel",
              "No pos or neg label!");

  /* balanced loss for pos and neg */
  lpos2neg = 0.5 * (np+nn) / np;
  lneg2pos = 0.5 * (np+nn) / nn;


  float ** convProbs = (float **)mxCalloc(nImgs,sizeof(float*));
  float ** concProbs = (float **)mxCalloc(nImgs,sizeof(float*));
  float ** scores    = (float **)mxCalloc(nImgs,sizeof(float*));
  float ** augScores = (float **)mxCalloc(nImgs,sizeof(float*));

  for(i=0;i<nImgs;i++) {
    convProbs[i] = (float *)mxCalloc(2*(int)nBoxes[i],sizeof(float));
    concProbs[i] = (float *)mxCalloc((int)nBoxes[i],sizeof(float));
    scores[i]    = (float *)mxCalloc((int)nBoxes[i],sizeof(float));
    augScores[i] = (float *)mxCalloc(2*(int)nBoxes[i],sizeof(float));

  }

#pragma omp parallel for schedule(dynamic) private(i)
  for(i=0;i<nImgs;i++) {
    if(y[i]==0)
      continue;

    const mxArray *tmp = mxGetFieldByNumber(prhs[1], i, 0);
    if(tmp == NULL) {
      mexPrintf("%s%d\t%s%d\n", "FIELD: ", ifield+1, "STRUCT INDEX :", 1);
      mexErrMsgIdAndTxt( "MATLAB:data:fieldEmpty",
              "Above field is empty!");
    }
    const float * x = (float *)mxGetData(tmp);
    //应该是获取第i幅图像的窗口数量
    int nB = (int)nBoxes[i];

    if((int)mxGetDimensions(tmp)[1]!=nB)
      mexErrMsgIdAndTxt("MATLAB:SLSVMC2:empty","mxGetDimensions(tmp)[1]!=nB");

    if(nB==0)
      mexErrMsgIdAndTxt("MATLAB:SLSVMC2:zeroval","zero num bb");

    if (mxGetDimensions(tmp)[0]!=nVars)
      mexErrMsgIdAndTxt("MATLAB:SLSVMC2:wrongdim","wrong feat dim");

    /* mexPrintf("y[%d] = %f nB %d\n",i,y[i],nB); */
    float concScore = 0;

    int b, d;

    for(b=0;b<nB;b++) {
      for(d=0;d<nVars;d++) {
        //对每个窗口进行得分相加
        scores[i][b] += (float)w[d] * x[nVars*b+d];
      }
      //计算第i幅图像的第b个窗口的得分
      scores[i][b] *= beta;
    }
    //凹的部分
    /* concave part */
    if(y[i]>0) {
      concScore = myLogSumExp(scores[i],nB);
      computeProb(scores[i],nB,concProbs[i]);
    }
    else if(y[i]<0) {
      concScore = logf((float)nB);
      for(b=0;b<nB;b++) {
        concProbs[i][b] = 0;
      }
    }
    else {
      mexErrMsgIdAndTxt("MATLAB:SLSVMC2:wlabel","wrong label");
    }
    //凸的部分
    /* convex part */
    if(y[i]>0) {
      for(b=0;b<nB;b++) {
        augScores[i][b] = scores[i][b];
        augScores[i][b+nB] = beta * lpos2neg;
      }
    }
    else if(y[i]<0) {
      for(b=0;b<nB;b++) {
        augScores[i][b] = scores[i][b] + beta * lneg2pos;
        augScores[i][b+nB] = 0;
      }
    }
    else {
      mexErrMsgIdAndTxt("MATLAB:SLSVMC2:wlabel","wrong label");
    }

    computeProb(augScores[i],2*nB,convProbs[i]);

    for(b=0;b<nB;b++) {
      float difp = (convProbs[i][b]-concProbs[i][b]);
      for(d=0;d<nVars;d++) {
        gs[i*nVars + d] += x[nVars*b+d] * difp;
      }
    }
    float convScore = myLogSumExp(augScores[i],2*nB);
    fs[i] = convScore - concScore;
  }
  for(i=0;i<nImgs;i++) {
    mxFree(augScores[i]);
    mxFree(scores[i]);
    mxFree(convProbs[i]);
    mxFree(concProbs[i]);
  }
  mxFree(augScores);
  mxFree(scores);
  mxFree(convProbs);
  mxFree(concProbs);

  /* sum objval and grads over all images */
  for(i=0;i<nImgs;i++) {
    if(y[i]==0)
      continue;

    f += fs[i];
    for(d=0;d<nVars;d++) {
      g[d] += gs[i*nVars+d];
    }
  }
  for(d=0;d<nVars;d++) {
    g[d] /= (nn+np);
  }
  f /= beta * (nn+np);

  /* add regularization */
  for(d=0;d<nVars-1;d++) {
    f += 0.5 * lambda * w[d] * w[d] ;
  }

  for(d=0;d<nVars-1;d++) {
    g[d] += lambda * w[d] ;
  }
  mxFree(cumNBoxes);
  mxFree(nBoxes);
  mxFree(gs);
  mxFree(fs);
/* mxFree(gconcProbs); mxFree(gconvProbs); mxFree(gscores); mxFree(gaugScores); */

  plhs[0] = mxCreateDoubleScalar(f);
}

/*---------------------------------------------------------------------------*/
float myLogSumExp(const float * vec, int dim) {

  float maxScore = -FLT_MAX ;
  int i=0;
  for (i=0;i<dim;i++) {
    if(maxScore<vec[i])
      maxScore = vec[i];
  }
  float sumScore = 0.f;
  for (i=0;i<dim;i++) {
    sumScore += expf(vec[i]-maxScore);
  }
  return logf(sumScore)+maxScore;
}
/*---------------------------------------------------------------------------*/
void computeProb(const float * in, int dim, float * out) {

  float maxScore = -FLT_MAX ;

  int i=0;
  for (i=0;i<dim;i++) {
    if(maxScore<in[i])
      maxScore = in[i];
  }
  //获取当前图片中的最大得分记为maxScore
  float sumExp = 0.f;
  for (i=0;i<dim;i++) {
    sumExp += expf(in[i]-maxScore);
  }
  mxAssert(sumExp>0.f,"");

  const float rSumExp = 1.f / sumExp;
  for (i=0;i<dim;i++) {
    out[i] = expf(in[i]-maxScore) * rSumExp;
  }
}

[1] C. John Yu and T. Joachims. Learning structural svms with latent variables. In ICML, pages 1169–1176, 2009.
[2] Chaitanya Desai, Deva Ramanan, and Charless C Fowlkes. Discriminative models for multi-class object layout. International journal of computer vision, 95(1):1–12, 201

你可能感兴趣的:(SVM,SLSVM)