由于标题强调了是在Spark平台实现的矩阵运算,所以本文会非常有针对性的介绍,甚至细节到Spark RDD的算子。
思想其实很简单,就是矩阵分块计算,而分块矩阵就成了小矩阵,然后就借助于Breeze实现。而对于Spark平台而言,其处理流程如下图:
这里仅仅提供一种思路,所以仅供参考。假设有两个矩阵A和B,其中A是m*k的矩阵,B是k*n的矩阵,CPU的总核数是cores,则分块方法:
由于BlockID最后要依靠RDD在集群中通信传输,所以BlockID必须是可序列化的。另外,BlockID要作为分块矩阵的唯一标识,所以BlockID必须具有唯一性,而BlockID的唯一由一下3个属性确定:
由于Spark处理文件时,是一行一行的处理的,所以一开始读文件,构成的RDD的类型是:RDD[(seqnum, DenseVector)] (seqnum:输入的行号,DenseVector:对应seqnum的矩阵行)。同时,我们还需要知道2个数据:
这时需要知道以下2个数据:
①mapPartitions{map}将RDD[(seqnum, DenseVector)]组成新的数据结构:RDD[(seqnum/subrow, (seqnum, DenseVector))]
②groupByKey作用RDD[(seqnum/subrow, (seqnum, DenseVector))]得到新的数据结构RDD[(seqnum/subrow, Iterable[(seqnum, DenseVector)])]
e.g.
allrow = 1000, rowblocknum = 5, subrow = allrow/rowblocknum = 200
③mapPartitions{map}把Iterable[(seqnum, DenseVector)]的数据填装到子/分块矩阵submatrix中
④构建新的数据结构:RDD[(BlockID, submatrix)]
③mapPartitions{map}把Iterable[(seqnum, DenseVector)]的数据填装到子/分块矩阵submatrix中
④构建新的数据结构:RDD[(BlockID, submatrix)]
例如:有两个矩阵A和B,其中A是6m*4k的矩阵,被分为3*2块个子矩阵;B是4k*4n的矩阵,被分为2*2块的子矩阵。如图:
下标(x,y,z)是每个子/分块矩阵的唯一标识BlockID(row: Int, col: Int, seq: Int = 0)的参数,即:
val array = Array.ofDim[(BlockID, DenseMatrix[Double])](nSplitNum) for (i <- 0 until nSplitNum) { val blockSeq = blockRow * nSplitNum * kSplitNum + i * kSplitNum + blockCol array(i) = (new BlockID(blockRow, i, blockSeq), DenseMatrix) }
val array = Array.ofDim[(BlockID, DenseMatrix [Double])](mSplitNum) for (i <- 0 until mSplitNum) { val blockSeq = i * nSplitNum * kSplitNum + blockCol * kSplitNum + blockRow array(i) = (new BlockID(i, blockCol, blockSeq), DenseMatrix) }
MatrixB
即:MatrixA每个子/分块矩阵复制nSplitNum份,MatrixB每个子/分块矩阵复制mSplitNum份,然后把Key值BlockID相同的子/分块矩阵相乘。
②join两矩阵A和B,使每一对subMatrix相乘,同时更新BlockID(blockRow, blockCol)使blockSeq默认为0。
③reduceByKey按BlockID把子/分块矩阵的乘积相加,得到最终的矩阵。
声明:这只是个人思想,仅做参考。按照这个想法,如果不做任何优化(比如,相乘的小矩阵不分块,而是采用广播的方式等等),在我的实验集群中好像最多能处理10000*10000*10000规模的数据集。
参考文献:
http://www.open-open.com/doc/view/dc6d0ce0233d4db397fd677a2d0a55dc