Poj3468_A Simple Problem with Integers

Description

You have N integers, A1A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of AaAa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint

The sums may exceed the range of 32-bit integers.


题意:

给定Q (1 ≤ Q ≤ 100,000)个数A1,A2 … AQ,,
以及可能多次进行的两个操作:
1) 对某个区间Ai … Aj的每个数都加n(n可变)
2) 求某个区间Ai … Aj的数的和

 

题目的数据规模容不得我们用简单的方法去解决。

本人也是第一天接触线段树,在之前AC了一道比较水的线段树后基本上能自己构建线段树

本题的解法正是利用了线段树。

值得注意的是 

1.数据范围,保存数据必须用long long 或__int64保存(除了区间可以用整形,其他最后用64位)

2.只存和,会导致每次加数的时候都要更新到叶子节点,速度太慢,这是必须要避免的。
本题树节点结构:
struct CNode 
{
    int a ,b; //区间起点和终点
    CNode * left, * right;
    long long nSum; //原来的和
    long long Inc; //增量c的累加
}; //本节点区间的和实际上是nSum+Inc*(R-L+1)

3.在增加时,如果要加的区间正好覆盖一个节点,则增加其节点的Inc值,不再往下走,否则要更新nSum,再将增量往下传在查询时,如果待查区间不是正好覆盖一个节点,就将节点的Inc往下带,然后将Inc代表的所有增量累加到nSum上后将Inc清0,接下来再往下查询

 

#include <iostream>
using namespace std;
#define MAXN 100010
int N,Q;

__int64 num[MAXN], ans ,x;

struct data
{
	__int64 sum,inc;
	int l,r;
}Tree[4*MAXN];

void CreateTree(int k,int l,int r)								//构树
{
	Tree[k].l = l;
	Tree[k].r = r;
	Tree[k].inc = 0;
	if(l == r)
		Tree[k].sum = num[l];
	else
	{
		int mid=(l+r)>>1;
		CreateTree(k+k,l,mid);
		CreateTree(k+k+1,mid+1,r);
		Tree[k].sum = Tree[k+k].sum + Tree[k+k+1].sum;
	}
}


void Add(int k,int l,int r,__int64 inc)								//C操作
{
	if(Tree[k].l == l && Tree[k].r == r)
	{
		Tree[k].inc += inc;
	}
	else
	{
		int mid = Tree[k+k].r;
		Tree[k].sum += (r-l+1)*inc;
		if(l>mid)
			Add(k+k+1,l,r,inc);
		else if(r<=mid)
			Add(k+k,l,r,inc);
		else
		{
			Add(k+k ,l,mid,inc);
			Add(k+k+1 ,mid+1,r,inc);
		}
	}
}

void Query(int k,int l,int r,__int64 temp)
{
	temp += Tree[k].inc;
	if(Tree[k].l == l &&Tree[k].r == r)
	{
		ans+= Tree[k].sum + temp * (r-l+1);
	}
	else
	{

		int mid = Tree[k+k].r;
		if(l>mid)
			Query(k+k+1,l,r,temp);
		else if(r<=mid)
			Query(k+k,l,r,temp);
		else
		{
			Query(k+k ,l,mid,temp);
			Query(k+k+1 ,mid+1,r,temp);
		}
	}
}

int main()
{
	int i,j;
	char ch;
	while(scanf("%d%d",&N,&Q)!=EOF)
	{
		
		
		for(i=1;i<=N;i++)
			scanf("%I64d",&num[i]);
		
		CreateTree(1,1,N);

		while(Q--)
		{
			getchar();
			scanf("%c %d %d",&ch,&i,&j);
			if(ch=='Q')
			{
				ans = 0;
				Query(1,i,j,0);
				printf("%I64d\n",ans);
			}
			else
			{
				scanf("%I64d",&x);
				Add(1,i,j,x);
			}
		}
	}
}


你可能感兴趣的:(Poj3468_A Simple Problem with Integers)