第三步:kafka的server启动过程 源代码运行内幕机制

 kafka分布式集群启动比spark分布式集群启动相对简化的思考,
1、spark分布式集群节点的启动,只在spark master节点执行start-all.sh,master节点会自动ssh到分布式的其他worker节点,将cmd命令发送过去,在worker节点jvm中自动就加载了main类来启动,如CorseGrainExecutorBackend,从而完成了master与worker的通信。

2、kafka就不一样,kafka在每台broker节点上都需手工启动kafka-server-start.sh,这样就简化了许多,在每个broker节点上就可以通过socket来通信了。

这么理解吧:
1、spark相当于一个小区的一个基站,基站起来了,分布式节点(手机)就自动带起来了,手机可以上网、打电话
2、kafka相当于固定电话,要每户每户进行安装,每一户人家(分布式broker)人工安装好了,就可以打电话了。电话调度executor使用FIFO,先来的电话先通,后来的电话就等待。

以上个人想的,可能描述不一定准确。

 

 

1、 kafka.kafka ->main ->kafkaServerStartable.startup

2、进入 kafkaServerStartable.scala -〉def startup() -〉kafka.server.startup()

3、进入kafka.server.scala: canStartup启动

 

if (canStartup) {
        metrics = new Metrics(metricConfig, reporters, kafkaMetricsTime,

true)

        brokerState.newState(Starting)

        /* start scheduler */ //启动kafka调度器
        kafkaScheduler.startup()

        /* setup zookeeper */ //初始化zookeeper
        zkUtils = initZk()

        /* start log manager */ //启动日志管理
        logManager = createLogManager(zkUtils.zkClient, brokerState)
        logManager.startup()

        /* generate brokerId */ //生成 brokerId
        config.brokerId =  getBrokerId
        this.logIdent = "[Kafka Server " + config.brokerId + "], "

        socketServer = new SocketServer(config, metrics, kafkaMetricsTime)
        socketServer.startup()  //socketServer启动

        /* start replica manager */ 启动副本管理
        replicaManager = new ReplicaManager(config, metrics, time,

kafkaMetricsTime, zkUtils, kafkaScheduler, logManager,
          isShuttingDown)
        replicaManager.startup()

        /* start kafka controller */ //启动kafka控制器
        kafkaController = new KafkaController(config, zkUtils, brokerState,

kafkaMetricsTime, metrics, threadNamePrefix)
        kafkaController.startup()

        /* start kafka coordinator */ //启动kafka协调器
        consumerCoordinator = GroupCoordinator.create(config, zkUtils,

replicaManager)
        consumerCoordinator.startup()

        /* Get the authorizer and initialize it if one is specified.*///启动

安全认证
        authorizer = Option(config.authorizerClassName).filter

(_.nonEmpty).map { authorizerClassName =>
          val authZ = CoreUtils.createObject[Authorizer](authorizerClassName)
          authZ.configure(config.originals())
          authZ
        }

        /* start processing requests */ //启动kakfa的请求线程池
        apis = new KafkaApis(socketServer.requestChannel, replicaManager,

consumerCoordinator,
          kafkaController, zkUtils, config.brokerId, config, metadataCache,

metrics, authorizer)
        requestHandlerPool = new KafkaRequestHandlerPool(config.brokerId,

socketServer.requestChannel, apis, config.numIoThreads)
        brokerState.newState(RunningAsBroker)

        Mx4jLoader.maybeLoad()

        /* start dynamic config manager */ //kafka动态配置管理
        dynamicConfigHandlers = Map[String, ConfigHandler](ConfigType.Topic

-> new TopicConfigHandler(logManager),
                                                           ConfigType.Client

-> new ClientIdConfigHandler(apis.quotaManagers))

        // Apply all existing client configs to the ClientIdConfigHandler to

bootstrap the overrides
        // TODO: Move this logic to DynamicConfigManager
        AdminUtils.fetchAllEntityConfigs(zkUtils, ConfigType.Client).foreach

{
          case (clientId, properties) => dynamicConfigHandlers

(ConfigType.Client).processConfigChanges(clientId, properties)
        }

        // Create the config manager. start listening to notifications
        dynamicConfigManager = new DynamicConfigManager(zkUtils,

dynamicConfigHandlers)
        dynamicConfigManager.startup()

        /* tell everyone we are alive */ // endpoint节点监听
        val listeners = config.advertisedListeners.map {case(protocol,

endpoint) =>
          if (endpoint.port == 0)
            (protocol, EndPoint(endpoint.host, socketServer.boundPort

(protocol), endpoint.protocolType))
          else
            (protocol, endpoint)
        }
        kafkaHealthcheck = new KafkaHealthcheck(config.brokerId, listeners,

zkUtils)
        kafkaHealthcheck.startup()

        /* register broker metrics */ 监控
        registerStats()

        shutdownLatch = new CountDownLatch(1)
        startupComplete.set(true)
        isStartingUp.set(false)
        AppInfoParser.registerAppInfo(jmxPrefix, config.brokerId.toString)
        info("started")
      }
    }

4、broker的状态探秘:
 brokerState.newState(Starting)->trait BrokerStates
 进入trait BrokerStates.scala

 

**
 * Broker states are the possible state that a kafka broker can be in.
 * A broker should be only in one state at a time.
 * The expected state transition with the following defined states is:
 *
 *                +-----------+
 *                |Not Running|
 *                +-----+-----+
 *                      |
 *                      v
 *                +-----+-----+
 *                |Starting   +--+
 *                +-----+-----+  | +----+------------+
 *                      |        +>+RecoveringFrom   |
 *                      v          |UncleanShutdown  |
 * +----------+     +-----+-----+  +-------+---------+
 * |RunningAs |     |RunningAs  |            |
 * |Controller+<--->+Broker     +<-----------+
 * +----------+     +-----+-----+
 *        |              |
 *        |              v
 *        |       +-----+------------+
 *        |-----> |PendingControlled |
 *                |Shutdown          |
 *                +-----+------------+
 *                      |
 *                      v
 *               +-----+----------+
 *               |BrokerShutting  |
 *               |Down            |
 *               +-----+----------+
 *                     |
 *                     v
 *               +-----+-----+
 *               |Not Running|
 *               +-----------+
 *


case object NotRunning extends BrokerStates { val state: Byte = 0 }
case object Starting extends BrokerStates { val state: Byte = 1 }
case object RecoveringFromUncleanShutdown extends BrokerStates { val state:

Byte = 2 }
case object RunningAsBroker extends BrokerStates { val state: Byte = 3 }
case object RunningAsController extends BrokerStates { val state: Byte = 4 }
case object PendingControlledShutdown extends BrokerStates { val state: Byte

= 6 }
case object BrokerShuttingDown extends BrokerStates { val state: Byte = 7 }


5、kafkaScheduler调度器
kafkaScheduler.startup()->kafkaScheduler.scala
进入kafkaScheduler.scala

 

 override def startup() {
    debug("Initializing task scheduler.")
    this synchronized {
      if(isStarted)
        throw new IllegalStateException("This scheduler has already been started!")
      executor = new ScheduledThreadPoolExecutor(threads)
      executor.setContinueExistingPeriodicTasksAfterShutdownPolicy(false)
      executor.setExecuteExistingDelayedTasksAfterShutdownPolicy(false)
      executor.setThreadFactory(new ThreadFactory() {
                                  def newThread(runnable: Runnable): Thread =
                                    Utils.newThread(threadNamePrefix + schedulerThreadId.getAndIncrement(), runnable, daemon)
                                })
    }
  }

第三步:kafka的server启动过程 源代码运行内幕机制_第1张图片

 

 

 

 

你可能感兴趣的:(第三步:kafka的server启动过程 源代码运行内幕机制)