小背包

链接:http://acm.hrbust.edu.cn/index.php?m=ProblemSet&a=showProblem&problem_id=1558


题目

  有N件物品和一个容量为V的背包。第i件物品的重量是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。

基本思路

  这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。 
  用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]} 。 可以压缩空间,f[v]=max{f[v],f[v-c[i]]+w[i]} 
  这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f [i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。 
  注意f[v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。所以按照这个方程递推完毕后,最终的答案并不一定是f[N] [V],而是f[N][0..V]的最大值。如果将状态的定义中的“恰”字去掉,在转移方程中就要再加入一项f[v-1],这样就可以保证f[N] [V]就是最后的答案。至于为什么这样就可以,由你自己来体会了。

优化空间复杂度

  以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(N)。 
  先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f [0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢? 
  f[i][v]是由f[i-1][v]和f [i-1][v-c[i]]两个子问题递推而来,能否保证在推f[v]时(也即在第i次主循环中推f[v]时)能够得到f[v]和f[v -c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下: 
  for i=1..N 
  for v=V..0 
  f[v]=max{f[v],f[v-c[i]]+w[i]}; 
  其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的 
  f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。


解题代码如下:


# include <stdio.h> # include <string.h> # define max(a, b) a > b ? a : b //宏替换 int dp[32210], w[20], v[20]; int main () { int m, n; while (~scanf("%d %d", &m, &n)) { for (int i = 1; i <= n; ++i) { scanf("%d", &v[i]); scanf("%d", &w[i]); } memset(dp, 0, sizeof(dp)); for (int i = 1; i <= n && i <= 32200; ++i) { for (int j = m > 32192 ? 32192 : m ; j >= 0; --j) { if (j >= v[i]) { dp[j] = max(dp[j], dp[j-v[i]] + w[i]); } else { dp[j] = dp[j]; } } } if (m > 32192) printf("%d\n", dp[32192]); else printf("%d\n", dp[m]); } return 0; }

你可能感兴趣的:(优化,二维数组,dp,动态规划)