2 2 2 1 1 0 1 1 1 2 1 0 0 1 0 1 4 2 2 1 0 1 1 1 2 0 2 2 3 0 0 1 1 2 0 2 2 0 0 0 1 1 1 0 2 2 2 0 2 1 1 1 0
Case 1: 2Case 2: 2
直接建图跑个dlx重复覆盖,过程中注意一个人物只能选择一次
#include<cstdio> #include<vector> #include<cmath> #include<map> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; const ll maxn = 105; int T, n, m, x, y, t, tot, f[maxn][2], tt = 0; struct people { int x, y; people(){} people(int x, int y) :x(x), y(y){} bool operator <(const people &a) { return f[x][y] < f[a.x][a.y]; } }; vector<people> p[maxn][2]; inline void read(int &ret) { char c; do { c = getchar(); } while (c < '0' || c > '9'); ret = c - '0'; while ((c = getchar()) >= '0' && c <= '9') ret = ret * 10 + (c - '0'); } struct DLX { #define maxn 500005 #define F(i,A,s) for (int i=A[s];i!=s;i=A[i]) int L[maxn], R[maxn], U[maxn], D[maxn]; int row[maxn], col[maxn], ans[maxn], cnt[maxn]; int n, m, num, sz; void add(int now, int l, int r, int u, int d, int x, int y) { L[now] = l; R[now] = r; U[now] = u; D[now] = d; row[now] = x; col[now] = y; } void reset(int n, int m) { num = 0x7FFFFFFF; this->n = n; this->m = m; for (int i = 0; i <= m; i++) { add(i, i - 1, i + 1, i, i, 0, i); cnt[i] = 0; } L[0] = m; R[m] = 0; sz = m + 1; } void insert(int x, int y) { int ft = sz - 1; if (row[ft] != x) { add(sz, sz, sz, U[y], y, x, y); U[D[sz]] = sz; D[U[sz]] = sz; } else { add(sz, ft, R[ft], U[y], y, x, y); R[L[sz]] = sz; L[R[sz]] = sz; U[D[sz]] = sz; D[U[sz]] = sz; } ++cnt[y]; ++sz; } //精确覆盖 void remove(int now) { R[L[now]] = R[now]; L[R[now]] = L[now]; F(i, D, now) F(j, R, i) { D[U[j]] = D[j]; U[D[j]] = U[j]; --cnt[col[j]]; } } void resume(int now) { F(i, U, now) F(j, L, i) { D[U[j]] = j; U[D[j]] = j; ++cnt[col[j]]; } R[L[now]] = now; L[R[now]] = now; } bool dfs(int x) { //if (x + A() >= num) return; if (!R[0]) { num = min(num, x); return true; } int now = R[0]; F(i, R, 0) if (cnt[now]>cnt[i]) now = i; remove(now); F(i, D, now) { ans[x] = row[i]; F(j, R, i) remove(col[j]); if (dfs(x + 1)) return true; F(j, L, i) resume(col[j]); } resume(now); return false; } //精确覆盖 //重复覆盖 void Remove(int now) { F(i, D, now) { L[R[i]] = L[i]; R[L[i]] = R[i]; } } void Resume(int now) { F(i, U, now) L[R[i]] = R[L[i]] = i; } int vis[maxn]; int flag[maxn]; int A() { int dis = 0; F(i, R, 0) vis[i] = 0; F(i, R, 0) if (!vis[i]) { dis++; vis[i] = 1; F(j, D, i) F(k, R, j) vis[col[k]] = 1; } return dis; } void Dfs(int x) { if (!R[0]) num = min(num, x); else if (x + A()<num) { int now = R[0]; F(i, R, 0) if (cnt[now]>cnt[i]) now = i; F(i, D, now) if (!flag[row[i] ^ 1]) { flag[row[i]] = 1; Remove(i); F(j, R, i) Remove(j); Dfs(x + 1); F(j, L, i) Resume(j); Resume(i); flag[row[i]] = 0; } } } //重复覆盖 }dlx; int main() { read(T); while (T--) { scanf("%d", &n); memset(f, 0, sizeof(f)); for (int i = 1; i <= n; i++) for (int j = 0; j < 2; j++) p[i][j].clear(); tot = 0; for (int i = 1; i <= n; i++) { scanf("%d", &m); for (int j = 0; j < m; j++) { f[i][j] = ++tot; scanf("%d", &t); while (t--) { scanf("%d%d", &x, &y); p[i][j].push_back(people(x + 1, y)); } for (int k = 0; k < m; k++) p[i][j].push_back(people(i, k)); } } dlx.reset(n, tot); for (int i = 1; i <= n; i++) { for (int j = 0; j < 2; j++) { sort(p[i][j].begin(), p[i][j].end()); for (int k = 0; k < p[i][j].size(); k++) { x = p[i][j][k].x; y = p[i][j][k].y; dlx.insert(i + i + j, f[x][y]); } } } memset(dlx.flag, 0, sizeof(dlx.flag)); dlx.Dfs(0); printf("Case %d: %d\n", ++tt, dlx.num); } return 0; }