Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 84588 | Accepted: 26203 | |
Case Time Limit: 2000MS |
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
Hint
#include"iostream" #include"cstdio" #define ll __int64 using namespace std; //线段树的最大节点数 const ll maxn=110000; //线段数定义 struct Tree{ ll l,r,sum,add; ll getmid(){ //返回线段的中点 return (l+r)>>1; } }tree[4*maxn]; //向上一层推 void pushup(ll x){ ll tmp=2*x; tree[x].sum=tree[tmp].sum+tree[tmp+1].sum; } //向下一层推 void pushdown(ll x){ ll tmp=2*x; tree[tmp].add+=tree[x].add; tree[tmp+1].add+=tree[x].add; tree[tmp].sum+=tree[x].add*(tree[tmp].r-tree[tmp].l+1); tree[tmp+1].sum+=tree[x].add*(tree[tmp+1].r-tree[tmp+1].l+1); tree[x].add=0; } //构建线段树 void Build(ll l,ll r,ll x){ tree[x].l=l; tree[x].r=r; tree[x].add=0; if(tree[x].l==tree[x].r){ //叶子节点 scanf("%I64d",&tree[x].sum); return ; } ll mid=tree[x].getmid(); ll tmp=2*x; Build(l,mid,tmp); //向左子树递归 Build(mid+1,r,tmp+1); //向右子树递归 pushup(x); //在回溯时向上推 } //区间更新 void Updata(ll l,ll r,ll x,ll c){ //所更新区间【l,r】,增加值c,当前节点x if(tree[x].l>r||tree[x].r<l) //节点包含区间,不在更新区间内 return ; if(l<=tree[x].l&&tree[x].r<=r){ //节点包含区间包含于更新区间 tree[x].add+=c; tree[x].sum+=c*(tree[x].r-tree[x].l+1); return ; } if(tree[x].add!=0) pushdown(x); //在抵达新一轮更新区间前,将之前积攒的add向下更新 ll tmp=2*x; Updata(l,r,tmp,c); Updata(l,r,tmp+1,c); pushup(x); } //区间查询 ll ans; //存储查询答案 void Query(ll l,ll r,ll x){ //【l,r】为当前查询区间,x为当前节点 if(tree[x].l>r||tree[x].r<l) //节点包含区间不在查询区间 return ; if(l<=tree[x].l&&tree[x].r<=r){ //节点区间包含于查询区间 ans+=tree[x].sum; return ; } if(tree[x].add!=0) pushdown(x); //在抵达询问区间前,将之前积攒的add向下更新 ll mid=tree[x].getmid(); ll tmp=2*x; if(r<=mid) //当前查询区间在节点的左半区间 Query(l,r,tmp); else if(l>mid) //当前查询区间在节点的右半区间 Query(l,r,tmp+1); else{ //查询区间分布在节点的左右区间 Query(l,mid,tmp); Query(mid+1,r,tmp+1); } } //主函数 int main(){ ll n,q; while(scanf("%I64d%I64d",&n,&q)!=EOF){ Build(1,n,1); char ch; while(q--){ getchar(); ch=getchar(); ll x,y,c; if(ch=='C'){ scanf("%I64d%I64d%I64d",&x,&y,&c); Updata(x,y,1,c); } else{ scanf("%I64d%I64d",&x,&y); ans=0; Query(x,y,1); printf("%I64d\n",ans); } } } return 0; }