【CUDA并行编程之六】KNN算法的并行实现

之前写了两篇文章一个是KNN算法的C++串行实现,另一个是CUDA计算向量的欧氏距离。那么这篇文章就可以说是前两篇文章的一个简单的整合。在看这篇文章之前可以先阅读前两篇文章。


一、生成数据集

现在需要生成一个N个D维的数据,没在一组数据都有一个类标,这个类标根据第一维的正负来进行标识样本数据的类标:Positive and Negative。

#!/usr/bin/python

import re
import sys
import random
import os

filename = "input.txt"

if(os.path.exists(filename)):
	print("%s exists and del" % filename)
	os.remove(filename)

fout = open(filename,"w")

for i in range( 0,int(sys.argv[1]) ): #str to int
	x = []
	for j in range(0,int(sys.argv[2])):
		x.append( "%4f" % random.uniform(-1,1) ) #generate random data and limit the digits into 4
		fout.write("%s\t" % x[j])
		#fout.write(x) : TypeError:expected a character buffer object 

	if(x[0][0] == '-'):
		fout.write(" Negative"+"\n")
	else:
		fout.write(" Positive"+"\n")

fout.close()

运行程序,生成4000个维度为8的数据:


生成了文件"input.txt":

【CUDA并行编程之六】KNN算法的并行实现_第1张图片


二、串行代码:

这个代码和之前的文章的代码一致,我们选择400个数据进行作为测试数据,3600个数据进行训练数据。

KNN_2.cc:

#include<iostream>
#include<map>
#include<vector>
#include<stdio.h>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<fstream>

using namespace std;

typedef string tLabel;
typedef double tData;
typedef pair<int,double>  PAIR;
const int MaxColLen = 10;
const int MaxRowLen = 10000;
ifstream fin;

class KNN
{
private:
		tData dataSet[MaxRowLen][MaxColLen];
		tLabel labels[MaxRowLen];
		tData testData[MaxColLen];
		int rowLen;
		int colLen;
		int k;
		int test_data_num;
		map<int,double> map_index_dis;
		map<tLabel,int> map_label_freq;
		double get_distance(tData *d1,tData *d2);
public:
		KNN(int k , int rowLen , int colLen , char *filename);
		void get_all_distance();
		tLabel get_max_freq_label();
		void auto_norm_data();
		void get_error_rate();
		struct CmpByValue
		{
			bool operator() (const PAIR& lhs,const PAIR& rhs)
			{
				return lhs.second < rhs.second;
			}
		};

		~KNN();	
};

KNN::~KNN()
{
	fin.close();
	map_index_dis.clear();
	map_label_freq.clear();
}

KNN::KNN(int k , int row ,int col , char *filename)
{
	this->rowLen = row;
	this->colLen = col;
	this->k = k;
	test_data_num = 0;
	
	fin.open(filename);

	if( !fin )
	{
		cout<<"can not open the file"<<endl;
		exit(0);
	}
	
	//read data from file
	for(int i=0;i<rowLen;i++)
	{
		for(int j=0;j<colLen;j++)
		{
			fin>>dataSet[i][j];
		}
		fin>>labels[i];
	}

}

void KNN:: get_error_rate()
{
	int i,j,count = 0;
	tLabel label;
	cout<<"please input the number of test data : "<<endl;
	cin>>test_data_num;
	for(i=0;i<test_data_num;i++)
	{
		for(j=0;j<colLen;j++)
		{
			testData[j] = dataSet[i][j];		
		}
		
		get_all_distance();
		label = get_max_freq_label();
		if( label!=labels[i] )
			count++;
		map_index_dis.clear();
		map_label_freq.clear();
	}
	cout<<"the error rate is = "<<(double)count/(double)test_data_num<<endl;
}

double KNN:: get_distance(tData *d1,tData *d2)
{
	double sum = 0;
	for(int i=0;i<colLen;i++)
	{
		sum += pow( (d1[i]-d2[i]) , 2 );
	}

	//cout<<"the sum is = "<<sum<<endl;
	return sqrt(sum);
}

//get distance between testData and all dataSet
void KNN:: get_all_distance()
{
	double distance;
	int i;
	for(i=test_data_num;i<rowLen;i++)
	{
		distance = get_distance(dataSet[i],testData);
		map_index_dis[i] = distance;
	}
}

tLabel KNN:: get_max_freq_label()
{
	vector<PAIR> vec_index_dis( map_index_dis.begin(),map_index_dis.end() );
	sort(vec_index_dis.begin(),vec_index_dis.end(),CmpByValue());

	for(int i=0;i<k;i++)
	{
		/*
		cout<<"the index = "<<vec_index_dis[i].first<<" the distance = "<<vec_index_dis[i].second<<" the label = "<<labels[ vec_index_dis[i].first ]<<" the coordinate ( ";
		int j;
		for(j=0;j<colLen-1;j++)
		{
			cout<<dataSet[ vec_index_dis[i].first ][j]<<",";
		}
		cout<<dataSet[ vec_index_dis[i].first ][j]<<" )"<<endl;
		*/
		map_label_freq[ labels[ vec_index_dis[i].first ]  ]++;
	}

	map<tLabel,int>::const_iterator map_it = map_label_freq.begin();
	tLabel label;
	int max_freq = 0;
	while( map_it != map_label_freq.end() )
	{
		if( map_it->second > max_freq )
		{
			max_freq = map_it->second;
			label = map_it->first;
		}
		map_it++;
	}
	//cout<<"The test data belongs to the "<<label<<" label"<<endl;
	return label;
}

void KNN::auto_norm_data()
{
	tData maxa[colLen] ;
	tData mina[colLen] ;
	tData range[colLen] ;
	int i,j;

	for(i=0;i<colLen;i++)
	{
		maxa[i] = max(dataSet[0][i],dataSet[1][i]);
		mina[i] = min(dataSet[0][i],dataSet[1][i]);
	}

	for(i=2;i<rowLen;i++)
	{
		for(j=0;j<colLen;j++)
		{
			if( dataSet[i][j]>maxa[j] )
			{
				maxa[j] = dataSet[i][j];
			}
			else if( dataSet[i][j]<mina[j] )
			{
				mina[j] = dataSet[i][j];
			}
		}
	}

	for(i=0;i<colLen;i++)
	{
		range[i] = maxa[i] - mina[i] ; 
		//normalize the test data set
		testData[i] = ( testData[i] - mina[i] )/range[i] ;
	}

	//normalize the training data set
	for(i=0;i<rowLen;i++)
	{
		for(j=0;j<colLen;j++)
		{
			dataSet[i][j] = ( dataSet[i][j] - mina[j] )/range[j];
		}
	}
}

int main(int argc , char** argv)
{
	int k,row,col;
	char *filename;
	
	if( argc!=5 )
	{
		cout<<"The input should be like this : ./a.out k row col filename"<<endl;
		exit(1);
	}

	k = atoi(argv[1]);
	row = atoi(argv[2]);
	col = atoi(argv[3]);
	filename = argv[4];

	KNN knn(k,row,col,filename);

	knn.auto_norm_data();
	knn.get_error_rate();

	return 0;
}
makefile:

target:
	g++ KNN_2.cc
	./a.out 7 4000 8 input.txt

cu:
	nvcc KNN.cu
	./a.out 7 4000 8 input.txt

运行结果:

【CUDA并行编程之六】KNN算法的并行实现_第2张图片


三、并行实现

并行实现的过程就是将没一个测试样本到N个训练样本的距离进行并行化,如果串行计算的话,时间复杂度为:O(N*D),如果串行计算的话,时间复杂度为O(D),其实D为数据的维度。

KNN.cu:

#include<iostream>
#include<map>
#include<vector>
#include<stdio.h>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<fstream>

using namespace std;

typedef string tLabel;
typedef float tData;
typedef pair<int,double>  PAIR;
const int MaxColLen = 10;
const int MaxRowLen = 10010;
const int test_data_num = 400;
ifstream fin;

class KNN
{
private:
		tData dataSet[MaxRowLen][MaxColLen];
		tLabel labels[MaxRowLen];
		tData testData[MaxColLen];
		tData trainingData[3600][8];
		int rowLen;
		int colLen;
		int k;
		map<int,double> map_index_dis;
		map<tLabel,int> map_label_freq;
		double get_distance(tData *d1,tData *d2);
public:
		KNN(int k , int rowLen , int colLen , char *filename);
		void get_all_distance();
		tLabel get_max_freq_label();
		void auto_norm_data();
		void get_error_rate();
		void get_training_data();
		struct CmpByValue
		{
			bool operator() (const PAIR& lhs,const PAIR& rhs)
			{
				return lhs.second < rhs.second;
			}
		};

		~KNN();	
};

KNN::~KNN()
{
	fin.close();
	map_index_dis.clear();
	map_label_freq.clear();
}

KNN::KNN(int k , int row ,int col , char *filename)
{
	this->rowLen = row;
	this->colLen = col;
	this->k = k;
	
	fin.open(filename);

	if( !fin )
	{
		cout<<"can not open the file"<<endl;
		exit(0);
	}

	for(int i=0;i<rowLen;i++)
	{
		for(int j=0;j<colLen;j++)
		{
			fin>>dataSet[i][j];
		}
		fin>>labels[i];
	}

}

void KNN:: get_training_data()
{
	for(int i=test_data_num;i<rowLen;i++)
	{
		for(int j=0;j<colLen;j++)
		{
			trainingData[i-test_data_num][j] = dataSet[i][j];
		}
	}
}

void KNN:: get_error_rate()
{
	int i,j,count = 0;
	tLabel label;

	cout<<"the test data number is : "<<test_data_num<<endl;

	get_training_data();

	//get testing data and calculate
	for(i=0;i<test_data_num;i++)
	{
		for(j=0;j<colLen;j++)
		{
			testData[j] = dataSet[i][j];		
		}
		
		get_all_distance();
		label = get_max_freq_label();
		if( label!=labels[i] )
			count++;
		map_index_dis.clear();
		map_label_freq.clear();
	}
	cout<<"the error rate is = "<<(double)count/(double)test_data_num<<endl;
}

//global function
__global__ void cal_dis(tData *train_data,tData *test_data,tData* dis,int pitch,int N , int D)
{
	int tid = blockIdx.x;
	if(tid<N)
	{
		tData temp = 0;
		tData sum = 0;
		for(int i=0;i<D;i++)
		{
			temp = *( (tData*)( (char*)train_data+tid*pitch  )+i ) - test_data[i];
			sum += temp * temp;
		}
		dis[tid] = sum;
	}
}

//Parallel calculate the distance
void KNN:: get_all_distance()
{
	int height = rowLen - test_data_num;
	tData *distance = new tData[height];
	tData *d_train_data,*d_test_data,*d_dis;
	size_t pitch_d ;
	size_t pitch_h = colLen * sizeof(tData);
	//allocate memory on GPU
	cudaMallocPitch( &d_train_data,&pitch_d,colLen*sizeof(tData),height);
	cudaMalloc( &d_test_data,colLen*sizeof(tData) );
	cudaMalloc( &d_dis, height*sizeof(tData) );

	cudaMemset( d_train_data,0,height*colLen*sizeof(tData) );
	cudaMemset( d_test_data,0,colLen*sizeof(tData) );
	cudaMemset( d_dis , 0 , height*sizeof(tData) );

	//copy training and testing data from host to device
	cudaMemcpy2D( d_train_data,pitch_d,trainingData,pitch_h,colLen*sizeof(tData),height,cudaMemcpyHostToDevice);
	cudaMemcpy( d_test_data,testData,colLen*sizeof(tData),cudaMemcpyHostToDevice);
	//calculate the distance
	cal_dis<<<height,1>>>( d_train_data,d_test_data,d_dis,pitch_d,height,colLen );
	//copy distance data from device to host
	cudaMemcpy( distance,d_dis,height*sizeof(tData),cudaMemcpyDeviceToHost);

	int i;
	for( i=0;i<rowLen-test_data_num;i++ )
	{
		map_index_dis[i+test_data_num] = distance[i];
	}

}

tLabel KNN:: get_max_freq_label()
{
	vector<PAIR> vec_index_dis( map_index_dis.begin(),map_index_dis.end() );
	sort(vec_index_dis.begin(),vec_index_dis.end(),CmpByValue());

	for(int i=0;i<k;i++)
	{
		/*
		cout<<"the index = "<<vec_index_dis[i].first<<" the distance = "<<vec_index_dis[i].second<<" the label = "<<labels[ vec_index_dis[i].first ]<<" the coordinate ( ";
		int j;
		for(j=0;j<colLen-1;j++)
		{
			cout<<dataSet[ vec_index_dis[i].first ][j]<<",";
		}
		cout<<dataSet[ vec_index_dis[i].first ][j]<<" )"<<endl;
		*/
		map_label_freq[ labels[ vec_index_dis[i].first ]  ]++;
	}

	map<tLabel,int>::const_iterator map_it = map_label_freq.begin();
	tLabel label;
	int max_freq = 0;
	while( map_it != map_label_freq.end() )
	{
		if( map_it->second > max_freq )
		{
			max_freq = map_it->second;
			label = map_it->first;
		}
		map_it++;
	}
	cout<<"The test data belongs to the "<<label<<" label"<<endl;
	return label;
}

void KNN::auto_norm_data()
{
	tData maxa[colLen] ;
	tData mina[colLen] ;
	tData range[colLen] ;
	int i,j;

	for(i=0;i<colLen;i++)
	{
		maxa[i] = max(dataSet[0][i],dataSet[1][i]);
		mina[i] = min(dataSet[0][i],dataSet[1][i]);
	}

	for(i=2;i<rowLen;i++)
	{
		for(j=0;j<colLen;j++)
		{
			if( dataSet[i][j]>maxa[j] )
			{
				maxa[j] = dataSet[i][j];
			}
			else if( dataSet[i][j]<mina[j] )
			{
				mina[j] = dataSet[i][j];
			}
		}
	}

	for(i=0;i<colLen;i++)
	{
		range[i] = maxa[i] - mina[i] ; 
		//normalize the test data set
		testData[i] = ( testData[i] - mina[i] )/range[i] ;
	}

	//normalize the training data set
	for(i=0;i<rowLen;i++)
	{
		for(j=0;j<colLen;j++)
		{
			dataSet[i][j] = ( dataSet[i][j] - mina[j] )/range[j];
		}
	}
}

int main(int argc , char** argv)
{
	int k,row,col;
	char *filename;
	
	if( argc!=5 )
	{
		cout<<"The input should be like this : ./a.out k row col filename"<<endl;
		exit(1);
	}

	k = atoi(argv[1]);
	row = atoi(argv[2]);
	col = atoi(argv[3]);
	filename = argv[4];

	KNN knn(k,row,col,filename);

	knn.auto_norm_data();
	knn.get_error_rate();

	return 0;
}

运行结果:


因为内存分配的问题(之前文章提到过),那么就需要将训练数据trainingData进行静态的空间分配,这样不是很方便。

可以看到,在测试数据集和训练数据集完全相同的情况下,结果是完全一样的。数据量小,没有做时间性能上的对比。还有可以改进的地方就是可以一次性的将所有testData载入到显存中,而不是一个一个的载入,这样就能够减少训练数据拷贝到显存中的次数,提高效率。


Author:忆之独秀

Email:[email protected]

注明出处:http://blog.csdn.net/lavorange/article/details/42172451


你可能感兴趣的:(CUDA,并行编程,knn)