贝叶斯定理

摘录自wiki百科


贝叶斯定理Bayes' theorem)是概率论中的一个结果,它跟随机变量的条件概率以及边缘概率分布有关。在有些关于概率的解说中,贝叶斯定理(贝叶斯更新)能够告知我们如何利用新证据修改已有的看法。

通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而,这两者是有确定的关系,贝叶斯定理就是这种关系的陈述。贝叶斯公式的用途在于通过己知三个概率函数推出第四个。它的内容是:在B出现的前提下,A出现的概率等于A出现的前提下B出现的概率乘以A出现的概率再除以B出现的概率。通过联系A与B,计算从一个事件产生另一事件的概率,即从结果上溯原。

作为一个普遍的原理,贝叶斯定理对于所有概率的解释是有效的;然而,频率主义者和贝叶斯主义者对于在应用中,某个随机事件的概率该如何被赋值,有着不同的看法: 频率主义者根据随机事件发生的频率,或者总体样本里面的发生的个数来赋值概率;贝叶斯主义者则根据未知的命题来赋值概率。这样的理念导致贝叶斯主义者有更多的机会使用贝叶斯定理。


定义:

贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。

其中P(A|B)是在B发生的情况下A发生的可能性。

在贝叶斯定理中,每个名词都有约定俗成的名称:

  • P(A)是A先验概率边缘概率。之所以称为"先验"是因为它不考虑任何B方面的因素。
  • P(A|B)是已知B发生后A条件概率,也由于得自B的取值而被称作A的后验概率。
  • P(B|A)是已知A发生后B条件概率,也由于得自A的取值而被称作B的后验概率。
  • P(B)是B先验概率边缘概率,也作标准化常量(normalized constant).

按这些术语,Bayes定理可表述为:

后验概率 = (相似度*先验概率)/标准化常量

也就是说,后验概率与先验概率和相似度的乘积成正比。

另外,比例P(B|A)/P(B)也有时被称作标准相似度(standardised likelihood),Bayes定理可表述为:

后验概率 = 标准相似度*先验概率

你可能感兴趣的:(贝叶斯定理)