You are given an array x of n
positive numbers. You start at point (0,0)
and moves x[0]
metres to the north, then x[1]
metres to the west, x[2]
metres to the south, x[3]
metres to the east and so on. In other words, after each move your direction changes counter-clockwise.
Write a one-pass algorithm with O(1)
extra space to determine, if your path crosses itself, or not.
Example 1:
Given x = [2, 1, 1, 2]
,
┌───┐
│ │
└───┼──>
│
Return true (self crossing)
Example 2:
Given x = [1, 2, 3, 4]
,
┌──────┐
│ │
│
│
└────────────>
Return false (not self crossing)
Example 3:
Given x = [1, 1, 1, 1]
,
┌───┐
│ │
└───┼>
Return true (self crossing)
不穿过自己的两种情况图:
很郁闷的一个题啊!本来想的很简单,不相交的情况就两种:矩形一直外扩或者一直内缩。
上手写的时候竟然写了很久很久,思维陷在判断语句里,把自己堵死了!
最后参考了网友的写法!超级简单!
其实基本思想一模一样的啊,但是我的编程功力真的差了好远……
程序:
class Solution { public: bool isSelfCrossing(vector<int>& x) { int n=x.size(); if(n<4)return false; int i=2; while(i<n&&x[i]>x[i-2]){//外扩 ++i; } if(i>=n)return false; if((i==3&&x[i]==x[i-2])||(i>=4&&x[i]+x[i-4]>=x[i-2])){ x[i-1]-=x[i-3]; } ++i; //内缩 while(i<n){ if(x[i]>=x[i-2]) return true; i++; } return false; } };