POJ3233(快速幂思想)

当k是偶数,A^1+A^2+...+A^k = (A^1 + A^2 + A^3 +... + A^k/2) + A^k/2 (A^1 + A^2 + A^3 +... + A^k/2),

当k是奇数,A^1+A^2+...+A^k = (A^1 + A^2 + A^3 +... + A^k/2) + A^(1+k/2) + A^(1+k/2) (A^1 + A^2 + A^3 +... + A^k/2)。

然后就可以递归地搞了。

#include <iostream>
#include <cstring>
using namespace std;
#define maxn 33

struct m {
    int a[maxn][maxn];
    void show (int n) {
        cout << "........." << endl;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                cout << a[i][j] << " ";
            } cout << endl;
        }
        cout << "........." << endl;
    }
}gg;
int n, mod, k;

m add (m a, m b) {
    m ans;
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++) {
            ans.a[i][j] = a.a[i][j] + b.a[i][j];
            ans.a[i][j] %= mod;
        }
    }
    return ans;
}

m mul (m a, m b) {
    m ans;
    memset (ans.a, 0, sizeof ans.a);
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++) {
            for (int l = 1; l <= n; l++) {
                ans.a[i][j] += a.a[i][l]*b.a[l][j];
                ans.a[i][j] %= mod;
            }
        }
    }
    return ans;
}

m qpow (m res, int k) {
    if (k == 1)
        return res;
    m ans = qpow (res, k/2);
    ans = mul (ans, ans);
    if (k&1)
        ans = mul (ans, res);
    return ans;
}

m solve (m res, int k) {
    if (k == 1)
        return res;
    m ans = solve (res, k/2);
    if (k&1) {
        m fuck = qpow (res, 1+(int)(k/2));
        ans = add (add (fuck, mul (fuck, ans)), ans);
    }
    else {
        m fuck = qpow (res, k/2); 
        ans = add (ans, mul (fuck, ans));
    }
    return ans;
}

int main () {
    ios::sync_with_stdio(0);
    while (cin >> n >> k >> mod) {
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                cin >> gg.a[i][j];
            }
        }
        gg = solve (gg, k);
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j < n; j++) {
                cout << gg.a[i][j]%mod << " ";
            } cout << gg.a[i][n]%mod << endl;
        }
    }
    return 0;
}


你可能感兴趣的:(POJ3233(快速幂思想))