Karafs is some kind of vegetable in shape of an 1 × h rectangle. Tavaspolis people love Karafs and they use Karafs in almost any kind of food. Tavas, himself, is crazy about Karafs.
Each Karafs has a positive integer height. Tavas has an infinite 1-based sequence of Karafses. The height of the i-th Karafs is si = A + (i - 1) × B.
For a given m, let's define an m-bite operation as decreasing the height of at most m distinct not eaten Karafses by 1. Karafs is considered as eaten when its height becomes zero.
Now SaDDas asks you n queries. In each query he gives you numbers l, t and m and you should find the largest number r such thatl ≤ r and sequence sl, sl + 1, ..., sr can be eaten by performing m-bite no more than t times or print -1 if there is no such number r.
The first line of input contains three integers A, B and n (1 ≤ A, B ≤ 106, 1 ≤ n ≤ 105).
Next n lines contain information about queries. i-th line contains integers l, t, m (1 ≤ l, t, m ≤ 106) for i-th query.
For each query, print its answer in a single line.
2 1 4
1 5 3
3 3 10
7 10 2
6 4 8
4
-1
8
-1
1 5 2
1 5 10
2 7 4
1
2
题目给出a,b,n,是一个由a开头,b为公差,长度无限的等差数列。。(数学题?)再输入l,t,m,取这个数列从l开始,m个数,每取一次这个数列中所有的数字-1,当首尾变成0的时候,可以向后移,问最后t次之后,最长的0序列的右边界是多少?
看着貌似比较难的样子,。。。别急。。慢慢一点一点分析。。。
首先可以确定,对于这个最终的序列而言,假设右边界为r,那么我们可以挖掘出这样两个条件。。。
max(h1,h2,...hr)<=t
和
h1+h2+...hr<=t*m
对于这两个条件,我们进行二分。。。。
(还是应了那句话,不是所有的二分都是裸二分。。。只出一个二分模板题是不可能的、。。。。)
上代码。。
#include<stdio.h> #include<ctype.h> #include<string.h> #include<stdlib.h> #include<math.h> #define MAXN 1000+10 long long a,b,n; long long l,t,m; long long cal(long long x) { return a+(x-1)*b; } long long get_sum(long long r) { return (cal(r)+cal(l))*(r-l+1)/2; } int main() { long long i,j,k,maxn; while(~scanf("%I64d%I64d%I64d",&a,&b,&n)) { while(n--) { scanf("%I64d%I64d%I64d",&l,&t,&m); if(cal(l)>t) { printf("-1\n"); continue; } long long ll = l,lr = (t-a)/b+1,mid; while(ll<=lr) { long long mid = (ll+lr)/2; if(get_sum(mid)<=t*m) ll = mid+1; else lr = mid-1; } printf("%d\n",ll-1); } } return 0; }