- Multi-Graph Fusion and Learning for RGBT Image Saliency Detection
宇来风满楼
SOD人工智能算法深度学习机器学习神经网络
theSLICalgorithmisperformedonthefusedRGB-Timage辅助信息作者未提供代码
- 【Pytorch】Visualization of Feature Maps(4)——Saliency Maps
bryant_meng
pytorch人工智能pythonsaliencymaps
学习参考来自SaliencyMaps的原理与简单实现(使用Pytorch实现)https://github.com/wmn7/ML_Practice/tree/master/2019_07_08/Saliency%20MapsSaliencyMaps原理《DeepInsideConvolutionalNetworks:VisualisingImageClassificationModelsandS
- JMSA(Jacobian Saliency Map Attack)算法源码解析
Sankkl1
AI安全算法python神经网络
论文链接:https://arxiv.org/abs/1511.07528v1源码出处:https://github.com/Harry24k/adversarial-attacks-pytorch/tree/master解析FGSM、PGD等算法生成的对抗样本的扰动方向都是损失函数的梯度方向(可以参考本人以前的博客),该论文生成的对抗样本的扰动方向是目标类别标记的预测值的梯度方向,作者将这个梯度
- 显著图(Saliency map)
KingsMan666
图像算法计算机视觉图像处理opencv
这里写目录标题概念应用算法传统算法静态显著性算法:对数光谱(SpectralResidual):静态显著性算法:细粒方法(FineGrained):人工智能算法基于眼动仪预测显著性区域方法积分梯度方法对比学习概念在计算机视觉中,显著图(Saliencymap)是一种突出人们眼睛首先关注的区域的图像。显著图的目标是反映像素对人类视觉系统的重要程度。显著性是图像的突出部分,我们的大脑会特别关注这个部分
- 基于显著性的无人机多光谱图像语义杂草检测与分类
毕竟是shy哥
杂草检测无人机分类数据挖掘
Saliency-BasedSemanticWeedsDetectionandClassificationUsingUAVMultispectralImaging(2023)摘要1、介绍2、相关工作2.1监督学习2.2半监督学习2.3无监督学习3、方法3.1贡献3.2PC/BC-DIMNEURALNETWORK(预测编码/有偏竞争-分裂输入调制)4、结论5、算法流程新词1:栽培杂草控制解释1:栽培
- 《Deep RGB-D Saliency Detection with Depth-Sensitive Attentionand Automatic Multi-Modal Fusion》阅读理解
yuehuihui00
显著性目标检测
转载请注明出处。作者:PengSunWenhuZhangHuanyuWangSongyuanLiXiLi论文地址:[2103.11832]DeepRGB-DSaliencyDetectionwithDepth-SensitiveAttentionandAutomaticMulti-ModalFusion(arxiv.org)2021CVPR作者提出了一个具有深度敏感注意力和自动多模态融合的深度RG
- 【论文精读】一石二鸟:Series Saliency for Accurate and Interpretable Multivariate Time Series Forecasting
程序媛小哨
时序预测机器学习
TwoBirdswithOneStone:SeriesSaliencyforAccurateandInterpretableMultivariateTimeSeriesForecastingAbstractItisimportantyetchallengingtoperformaccurateandinterpretabletimeseriesforecasting.Thoughdeeplearn
- 论文阅读——Texture-guided Saliency Distilling for Unsupervised Salient Object Detection
醋酸洋红就是我
论文阅读论文阅读目标检测人工智能
目录基本信息标题目前存在的问题改进网络结构另一个写的好的参考基本信息期刊CVPR年份2023论文地址https://browse.arxiv.org/pdf/2207.05921.pdf代码地址https://github.com/moothes/A2S-v2标题基于纹理引导的显著性提取的无监督显著性目标检测目前存在的问题大多数基于深度学习(Deeplearning,DL-based)的方法都是基
- Saliency maps
MTandHJ
neuralnetworks
文章目录问题细节变量$S_c(I)$扩展代码DeepInsideConvolutionalNetworks:VisualisingImageClassificationModelsandSaliencyMaps问题这篇文章和ZFnet相似,旨在研究网络可视化的问题,根据分裂网络最后的向量来反推出最原始的图像,如果假设输入(input)是III,而输入图像对应的标签是ccc,而分类器的得分是Sc(I)
- Pyramid Grafting Network for One-Stage High Resolution Saliency Detection
看到我请叫我去学java吖
深度学习人工智能计算机视觉
Abstract背景现有的SOD均多是以低分辨率图像作为输入由于采样深度与感受野之间存在矛盾,所以现有的为低分辨率图像设计的模型,在高分辨率图像上无法有精准的效果提出金字塔移植网络(PGNet):Encoder-Decoder架构,在Encoder中建立两条分支(Swin-Transformer及ResNet-18)提取特征,提出基于注意力的跨模型移植模块(CMGM)结合两条分支的特征,设计注意力
- 论文阅读——Pyramid Grafting Network for One-Stage High Resolution Saliency Detection
醋酸洋红就是我
论文阅读
目录基本信息标题目前存在的问题改进网络结构CMGM模块解答为什么要用这两个编码器进行编码另一个写的好的参考基本信息期刊CVPR年份2022论文地址https://arxiv.org/pdf/2204.05041.pdf代码地址https://github.com/iCVTEAM/PGNet标题金字塔嫁接网络的一级高分辨率显著性检测目前存在的问题cosod用于低分辨率图片下表现良好,高分辨率下(10
- 【论文翻译】Recurrent Saliency Transformation Network: Incorporating Multi-Stage Visual Cues for Small ...
hy_238f
项目地址:https://github.com/twni2016/OrganSegRSTN_PyTorch完整的图、表及引用见原文,用于学习记录,与有需要的人分享。摘要我们的目标是从腹部CT扫描中分割小的器官(如胰腺)。由于目标在输入图像中往往占据相对较小的区域,深度神经网络容易被复杂多变的背景所混淆。为了缓解这种情况,研究人员提出了一种由粗到细的方法[46],该方法使用从第一个(粗)阶段的预测来
- 在vscode中做实验出现的bug......
TerryBlog
Debugvscodebug
1、python如何调用opencv中的saliency模块 如果你已经安装了opencv-python的库,但是调用cv2.saliency方法时出现了如下的报错:module‘cv2.saliency’hasnoattribute‘StaticSaliencySpectralResidual_create’ 这时你只需要卸载opencv-python库,安装opencv-contrib-p
- 基于显著性的图像分割 Saliency Based Image Segmentation
加刘景长
通常我们看到一幅图像的时候,我们都会关注于图像中的某一点上。这有可能是一个人,一个建筑物或者甚至是一个水桶。图像的清晰部分几乎没有什么意义,这些部分在图像中通常的特点是缺少关注点、颜色单调和纹理平滑。当这样一类图像出现的时候,它们是从图像剩余部分分割出感兴趣目标的理想图像。这篇文章就探索了这类显著性图像的分割。显著性图像的例子。左边的水桶和右边的人就是感兴趣的目标。这个项目最初来源于对于发掘一个自
- cs231n assignment3 q1Network Visualization
理智点
cs231npython开发语言
文章目录嫌啰嗦直接看代码Q1:NetworkVisualizationcompute_saliency_maps题面解析代码输出make_fooling_image题面解析代码输出class_visualization_update_step题面解析代码输出结语嫌啰嗦直接看代码Q1:NetworkVisualizationcompute_saliency_maps题面这部分的任务需要我们计算图像的
- 显著性检测saliency detection代码实现
FrenchOldDriver
图像处理深度学习算法pythonnumpy深度学习
数学原理不具体展开直接上代码importcv2importmatplotlib.pyplotaspltsaliency=cv2.saliency.StaticSaliencyFineGrained_create()(_,sm)=saliency.computeSaliency(img)plt.imshow(sm,cmap=plt.cm.hot)就可以实现如下效果的变换也可以利用预训练模型生成mod
- Note《Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure》
sunsimple
这篇文章的整体思路首先是得到清晰块,不清晰块和含有清晰区域和不清晰区域的块,然后再在含有清晰区域和不清晰区域的块中确定边界。最后再将所有图像的清晰块相结合,边界区域相结合,最后得到融合后的图像。其主要思路是:Step1:定义一种清晰度描述,MSMFM,一种多尺度下形态学梯度求和的结果。如图1:图1Step2:基于saliency_map确定清晰块,不清晰块及含有清晰区域和不清晰区域的块。并在清晰区
- 【论文精读】TMI2021医学图像分割 SMU-Net
LANG_C_
论文精读深度学习神经网络机器学习计算机视觉人工智能
TMI2021医学图像分割论文SMU-Net:Saliency-guidedMorphology-awareU-NetforBreastLesionSegmentationinUltrasoundImageSMU-Net:显著引导形态感知U-Net用于超声图像乳腺病变分割目录TMI2021医学图像分割论文摘要一、主要亮点二、METHOD1.SaliencyMapGeneration1.1Low-l
- 医学论文笔记:TMI2021 SMU-Net: Saliency-Guided Morphology-Aware U-Net for Breast Lesion Segmentation ...
_击空明兮溯流光_
计算机视觉人工智能
乳腺超声分割:文章指出周围组织(即背景)和病变区域(即前景)之间的模式复杂性和强度相似性给病变分割带来了挑战。考虑到背景中包含如此丰富的纹理信息,很少有方法尝试探索和利用背景显着表示来辅助前景分割。此外,BUS图像的其他特征,即1)低对比度外观和模糊边界,以及2)病灶形状和位置变化显着,也增加了准确病灶分割的难度。文中提出了saliency-guidedmorphology-awareU-Net(
- 论文阅读
普通网友
人工智能大数据
LearningtoPromoteSaliencyDetectorshttps://github.com/lartpang/M...缩写标注:SD:SaliencyDetectionZSL:Zero-ShotLearning关键内容:没有训练直接将图像映射到标签中的DNN。相反,将DNN拟合为一个嵌入函数,以将像素和显著/背景区域的属性映射到度量空间。显着/背景区域的属性被映射为度量空间中的锚点。
- 【显著目标检测论文】Pyramid Feature Attention Network for Saliency detection
一根大白菜
显著目标检测论文目标检测深度学习计算机视觉
2019发表于CVPR的一篇显著目标检测论文论文原文代码地址摘要显著性检测是计算机视觉的基本挑战之一。如何提取有效的特征是显著性检测的一个关键点。最近的方法主要是不加区分地采用融合多尺度卷积特征。然而,并非所有的特征都对显著性检测有用,有些甚至会造成干扰。为了解决这个问题,我们提出了金字塔特征注意力网络,以关注有效的高级背景特征和低级空间结构特征。首先,我们设计了上下文感知的金字塔特征提取(CPF
- 显著性目标检测之Learning to Promote Saliency Detectors
有为少年
深度学习#显著性检测深度学习pytorch神经网络
LearningtoPromoteSaliencyDetectors论文阅读旧文重发https://github.com/lartpang/Machine-Deep-Learning缩写标注:SD:SaliencyDetectionZSL:Zero-ShotLearning关键内容:没有训练直接将图像映射到标签中的DNN。相反,将DNN拟合为一个嵌入函数,以将像素和显著/背景区域的属性映射到度量空
- 我读Boosting Saliency CVPR 2012
工长山
文献阅读笔记BoostingSaliencyCVPR2012
原创手打,转载请注明出处。如有疑问或者错误,留言即可。讲稿ppt:http://download.csdn.net/detail/xuanwu_yan/48525582014.4.28更新:MatlabwithCmex实现方法已传至github,方便大家直接下载。传送门BoostingBottom-upandTop-downVisualFeaturesforSaliency这篇文章的作者是AliB
- Railroad is not a Train: Saliency as Pseudo-pixel Supervision for Weakly Supervised Semantic Segment
塔克拉玛干沙漠的卖水小孩
paper深度学习人工智能机器学习
RailroadisnotaTrain:SaliencyasPseudo-pixelSupervisionforWeaklySupervisedSemanticSegmentation摘要1.Introduction2.RelatedWork3.ProposedMethod3.1.Motivation3.2.ExplicitPseudo-pixelSupervision3.3.JointTrain
- 论文阅读:Gradient-Induced Co-Saliency Detection(ECCV2020)
淘尽黄沙后
论文笔记cnn人工智能神经网络
ECCV2020papergithub代码https://github.com/zzhanghub/gicd论文主要工作:针对协同显著性检测问题,提交检测精度。方法:首先,我们对一组图像在高维嵌入空间中抽象出其一致特征表示,一旦获得一致表示,我们提出了梯度诱导模块(GradientInducingModule,GIM)来模仿人类行为,将特定场景与一致描述进行比较,以反馈匹配信息。为了更好地评价Co
- 《Online Visual Place Recognition via Saliency Re-identification》论文阅读和实验
gy_Rick
本科毕业设计slam傅立叶分析c++cv
《OnlineVisualPlaceRecognitionviaSaliencyRe-identification》论文阅读和实验摘要相关工作原理1.突出特征检测2.突出特征匹配3.一致性检验实验1.突出特征检测2.闭环检测实验参考文献摘要作者认为现存的针对地点识别(visualplacerecognition)的一般方法——特征提取和匹配,均存在计算量较大的问题。人类在地点识别过程中,往往只会记
- siris 显著性排序网络代码解读(training过程)Inferring Attention Shift Ranks of Objects for Image Saliency
Cleo_Gao
卷积神经网络python神经网络计算机视觉
阅前说明前面已经出现的代码用…代替。本文仅解析train部分的代码(inference的部分会后续更新)。不对网络结构做过多解释,默认已经熟悉mrcnn的结构以及读过这篇论文了。另:inference部分已更新,见:siris显著性排序网络代码解读(inference过程)文章目录第一部分训练mrcnn网络obj_sal_seg_branch/train.pyobj_sal_seg_branch.
- 《A Model of Saliency-based Visual Attention for Rapid Scene Analysis》翻译和笔记
rosqin
论文相关
原文链接:AModelofSaliency-basedVisualAttentionforRapidSceneAnalysis以机翻为主,人工校对。摘要Avisualattentionsystem,inspiredbythebehaviorandtheneuronalarchitectureoftheearlyprimatevisualsystem,ispresented.Multiscaleim
- 【论文阅读002】Generating Natural Language Adversarial Examples through ProbabilityWeightedWord Saliency
Su-RE
论文深度学习
论文地址:GeneratingNaturalLanguageAdversarialExamplesthroughProbabilityWeightedWordSaliency-ACLAnthology,发表于第57届计算语言学协会年会论文集(2019年7月28日至8月2日)的第1085-1097页。目录论文主要工作已有的工作创新性具体方法问题对抗样本示例单词替换候选词选择替换策略效果评价论文主要工
- Shallow and Deep Convolutional Networks for Saliency Prediction
cv_family_z
ZJCVPR2016深度学习
CVPR2016ShallowandDeepConvolutionalNetworksforSaliencyPredictionCNN网络用于显著性预测开源代码:https://github.com/imatge-upc/saliency-2016-cvpr本文针对显著性预测问题,提出了两个CNN网络,一个小的模型,一个较深的模型。视觉显著性指智能算法通过模拟人的视觉特点,标注出图片中的显著区域(
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag