何谓数据结构
数据结构是在整个计算机科学与技术领域上广泛被使用的术语。它用来反映一个数据的内部构成,即一个数据由哪些成分数据构成,以什么方式构成,呈什么结构。数据结构有逻辑上的数据结构和物理上的数据结构之分。逻辑上的数据结构反映成分数据之间的逻辑关系,而物理上的数据结构反映成分数据在计算机内部的存储安排。数据结构是数据存在的形式。
数据结构是信息的一种组织方式,其目的是为了提高算法的效率,它通常与一组算法的集合相对应,通过这组算法集合可以对数据结构中的数据进行某种操作。
数据结构主要研究什么?
数据结构作为一门学科主要研究数据的各种逻辑结构和存储结构,以及对数据的各种操作。因此,主要有三个方面的内容:数据的逻辑结构;数据的物理存储结构;对数据的操作(或算法)。通常,算法的设计取决于数据的逻辑结构,算法的实现取决于数据的物理存储结构。
什么是数据结构?什么是逻辑结构和物理结构?
数据是指由有限的符号(比如,"0"和"1",具有其自己的结构、操作、和相应的语义)组成的元素的集合。结构是元素之间的关系的集合。通常来说,一个数据结构DS 可以表示为一个二元组:
DS=(D,S), //i.e., data-structure=(data-part,logic-structure-part)
这里D是数据元素的集合(或者是“结点”,可能还含有“数据项”或“数据域”),S是定义在D(或其他集合)上的关系的集合,S = { R | R : D×D×...},称之为元素的逻辑结构。
逻辑结构有四种基本类型:集合结构、线性结构、树状结构和网络结构。表和树是最常用的两种高效数据结构,许多高效的算法可以用这两种数据结构来设计实现。表是线性结构的(全序关系),树(偏序或层次关系)和图(局部有序(weak/local orders))是非线性结构。
数据结构的物理结构是指逻辑结构的存储镜像(image)。数据结构 DS 的物理结构 P 对应于从 DS 的数据元素到存储区M(维护着逻辑结构S)的一个映射:
P:(D,S) --> M
存储器模型:一个存储器 M 是一系列固定大小的存储单元,每个单元 U 有一个唯一的地址 A(U),该地址被连续地编码。每个单元 U 有一个唯一的后继单元 U'=succ(U)。
P 的四种基本映射模型:顺序(sequential)、链接(linked)、索引(indexed)和散列(hashing)映射。
因此,我们至少可以得到4×4种可能的物理数据结构:
sequential |
(sets) |
linked |
lists |
indexed |
trees |
hash |
graphs |
(并不是所有的可能组合都合理)
数据结构DS上的操作:所有的定义在DS上的操作在改变数据元素(节点)或节点的域时必须保持DS的逻辑和物理结构。
DS上的基本操作:任何其他对DS的高级操作都可以用这些基本操作来实现。最好将DS和他的所有基本操作看作一个整体——称之为模块。我们可以进一步将该模块抽象为数据类型(其中DS的存储结构被表示为私有成员,基本操作被表示为公共方法),称之为ADT。作为ADT,堆栈和队列都是一种特殊的表,他们拥有表的操作的子集。
对于DATs的高级操作可以被设计为(不封装的)算法,利用基本操作对DS进行处理。
好的和坏的DS:如果一个DS可以通过某种“线性规则”被转化为线性的DS(例如线性表),则称它为好的DS。好的DS通 常对应于好的(高效的)算法。这是由计算机的计算能力决定的,因为计算机本质上只能存取逻辑连续的内存单元,因此如何没有线性化的结构逻辑上是不可计算 的。比如对一个图进行操作,要访问图的所有结点,则必须按照某种顺序来依次访问所有节点(要形成一个偏序),必须通过某种方式将图固有的非线性结构转化为 线性结构才能对图进行操作。
树是 好的DS——它有非常简单而高效的线性化规则,因此可以利用树设计出许多非常高效的算法。树的实现和使用都很简单,但可以解决大量特殊的复杂问题,因此树 是实际编程中最重要和最有用的一种数据结构。树的结构本质上有递归的性质——每一个叶节点可以被一棵子树所替代,反之亦然。际上,每一种递归的结构都可 以被转化为(或等价于)树形结构。