UVa 10594 Data Flow(无向图的费用流)

题目链接:UVa 10594 Data Flow

无向图的费用流。

无向图,则必须使用邻接表,这样才能解决反向边的问题。

加一个点0,表示为起点,设置cap[0][1]=D(题目给的流量D),cost[0][1]=0。显然到终点的最大流量不可能超过D,那么小于D的话表示不可解,等于D表示有解。

#include <iostream>
#include <cstring>
#include <stdio.h>
#include <queue>

using namespace std;

const int MAX_N = 100 + 10;
const int MAX_E = 5000;
const int MAX_M = 5000 << 2;
const long long first = 1;
const long long LLINF = (first << 60);
const int INF = (1 << 30);
struct Edge1
{
    int u, v, next;
    long long cost;
    int flow, cap;

};
struct Edge2
{
    int u, v;
    long long cost;
};
Edge1 edge1[MAX_M];
Edge2 edge2[MAX_E];
int head[MAX_N];
long long dis[MAX_N];
int p[MAX_N];
bool vis[MAX_N];
int n, m, cnt, d;
long long f, c, cap;
void add(int u, int v, long long cost, int cap)
{
    edge1[cnt].u = u;
    edge1[cnt].v = v;
    edge1[cnt].cap = cap;
    edge1[cnt].cost = cost;
    edge1[cnt].flow = 0;
    edge1[cnt].next = head[u];
    head[u] = cnt;
    cnt++;
    edge1[cnt].u = v;
    edge1[cnt].v = u;
    edge1[cnt].cap = 0;
    edge1[cnt].cost = -cost;
    edge1[cnt].flow = 0;
    edge1[cnt].next = head[v];
    head[v] = cnt;
    cnt++;

}
void EK()
{
    queue <int> q;
    c = f = 0;
    while(true)
    {
        for(int i = 0;i <= n; i++)
            dis[i] = (i == 0 ? 0 : LLINF);
        memset(vis, false, sizeof(vis));
        memset(p, -1, sizeof(p));
        q.push(0);
        while(!q.empty())
        {
            int u = q.front();
            q.pop();
            vis[u] = false;
            for(int k = head[u]; k != -1; k = edge1[k].next)
            {
                int v = edge1[k].v;
                if(edge1[k].cap > edge1[k].flow && dis[v] > dis[u] + edge1[k].cost)
                {
                    dis[v] = dis[u] + edge1[k].cost;
                    p[v] = k;
                    if(!vis[v])
                    {
                        vis[v] = true;
                        q.push(v);
                    }
                }
            }
        }
        if(dis[n] == LLINF)
            break;
        int a = INF;
        for(int u = p[n]; u != -1; u = p[edge1[u].u])//这里的u是指第u条边,不再是邻接矩阵里面的顶点
            a = min(a, edge1[u].cap - edge1[u].flow);
        for(int u = p[n]; u != -1; u = p[edge1[u].u])//增广,这里的u是指第u条边,不再是邻接矩阵里面的顶点
        {
            edge1[u].flow += a;
            edge1[u^1].flow -= a;//注意看这里的亦或符号 比如u为2,亦或后就是3了,恰好第二条边的反向边就是第三条边
        }
        c += dis[n] * a;//注意需要乘以距离
        f += a;
    }
}
int main()
{
    while(scanf("%d%d", &n, &m) != EOF)
    {
        cnt = 0;
        memset(head, -1, sizeof(head));
        for(int i = 0; i < m; i++)
            scanf("%d%d%lld", &edge2[i].u, &edge2[i].v, &edge2[i].cost);
        scanf("%d%d", &d, &cap);
        add(0, 1, 0, d);
        for(int i = 0; i < m; i++)
        {
            add(edge2[i].u, edge2[i].v, edge2[i].cost, cap);
            add(edge2[i].v, edge2[i].u, edge2[i].cost, cap);
        }
        EK();
        if(f == d)
            printf("%lld\n", c);
        else
            printf("Impossible.\n");
    }
    return 0;
}


你可能感兴趣的:(UVa 10594 Data Flow(无向图的费用流))