POJ-1236 Network of Schools (强连通分量[Tarjan])

Network of Schools
http://poj.org/problem?id=1236
Time Limit: 1000MS   Memory Limit: 10000K
     

Description

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is in the distribution list of school A, then A does not necessarily appear in the list of school B 
You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school. 

Input

The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.

Output

Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.

Sample Input

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output

1
2

题目大意:给定一个有向图,求: ① 至少要选几个顶点,才能做到从这些顶点出发,可以到达全部顶点  ② 至少要加多少条边,才能使得从任何一个顶点出发,都能到达全部顶点

首先又得了解到一个定理:有向无环图中所有入度不为0的点,一定可以由某个入度为0的点出发可达。(由于无环,所以从任何入度不为0的点往回走,必然终止于一个入度为0的点)

则可以处理出所有的强连通分量,并将强连通分量缩成一点,新图中入度为0的点数即为第①问答案

若要新图成为一个强连通分量,则不存在出度或入度为0的点,则两者中的较大值为第②问答案

注意:如果新图只有一个强连通分量,则第②问答案为0

#include <cstdio>
#include <cstring>
#include <vector>

using namespace std;

const int MAXN=105;

int n,s,e,num,cnt;//num表示时间戳,cnt表示强连通分量个数
int stak[MAXN],top;//top指向栈顶元素的后一个,也表示栈内元素个数
int dfn[MAXN],low[MAXN],color[MAXN],indeg[MAXN],outdeg[MAXN];
vector<int> edge[MAXN];
bool isIn[MAXN];

void Tarjan(int u) {
    dfn[u]=low[u]=++num;
    isIn[u]=true;//标记点u在栈中
    stak[top++]=u;//当前点入栈
    int v;
    for(int i=0;i<edge[u].size();++i) {
        v=edge[u][i];
        if(dfn[v]==0) {//如果点v未遍历
            Tarjan(v);
            low[u]=min(low[u],low[v]);
        }
        else if(isIn[v]&&dfn[v]<low[u]) {//如果点v已遍历且在栈中
            low[u]=dfn[v];
        }
    }
    if(dfn[u]==low[u]) {
        ++cnt;//强连通分量数+1
        do {
            v=stak[--top];
            isIn[v]=false;//标记点v不在栈中
            color[v]=cnt;//强连通分量缩成一点
        } while(u!=v);
    }
}

void solve() {
    num=cnt=top=0;
    memset(dfn,0,sizeof(dfn));
    memset(isIn,false,sizeof(isIn));
    for(int i=1;i<=n;++i)
        if(dfn[i]==0)
            Tarjan(i);

    memset(indeg,0,sizeof(indeg));
    memset(outdeg,0,sizeof(outdeg));
    for(int i=1;i<=n;++i) {
        for(int j=0;j<edge[i].size();++j) {
            if(color[i]!=color[edge[i][j]]) {//如果不在一个缩点中,则更新各自缩点的出入度
                ++outdeg[color[i]];
                ++indeg[color[edge[i][j]]];
            }
        }
    }
    int cntIn=0,cntOut=0;//cntIn表示入度为0的缩点个数;cntOut表示出度为0的缩点个数
    for(int i=1;i<=cnt;++i) {
        if(indeg[i]==0)
            ++cntIn;
        if(outdeg[i]==0)
            ++cntOut;
    }
    printf("%d\n%d\n",cntIn,cnt==1?0:max(cntIn,cntOut));//注意如果只有一个强连通分量(包括n==1),则不需要添加边
}

int main() {
    while(scanf("%d",&n)==1) {
        for(int i=1;i<=n;++i)
            edge[i].clear();
        for(int i=1;i<=n;++i) {
            scanf("%d",&e);
            while(e!=0) {
                edge[i].push_back(e);
                scanf("%d",&e);
            }
        }
        solve();
    }
    return 0;
}


你可能感兴趣的:(poj,图论,Tarjan)