参考wiki
https://en.wikipedia.org/wiki/DBSCAN
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法。与划分和层次聚类方法不同,它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类。
DBSCAN目的是找到密度相连对象的最大集合。
而正是因为密度相连的引入,dbscan可以发现任意形状的聚类。
这个算法概念很多,但理解之后实现起来很简单,大家可以自己试试。
下面是我的实现
// DBSCAN.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include<vector> #include<set> #include <algorithm> #include <iterator> #include<cstdlib> #include<time.h> #include<iostream> using namespace std; #define DBPOINTTYPE int class dbscan { public: enum DBState{ unlabeled, core, border, noise };//数据点当前的状态 struct DBPoint { int dim;//数据点的维数 DBState state; vector<DBPOINTTYPE>data; vector<int>near;//该点直接密度可达的点的集合,以dataset索引方式存储 DBPoint(unsigned int d) :dim(d) { state = unlabeled; } }; struct DBCluster { int label;//该簇的标号 set<int>border;//该簇边界点的集合,以dataset索引方式存储 set<int>core;//该簇核心点的集合,以dataset索引方式存储 }; public: dbscan(int minpts, double rad) :MinPts(minpts), radius(rad) { time_t t; srand(time(&t)); } ~dbscan(); void apply(); void generate_dataset(int datasetsize, int Y, int X); void showresult(){ for (int i = 0; i < clusters.size(); i++) { char string[100]; sprintf(string, "第个%d簇:", i); cout << string << endl; cout << "核心:" << endl; for (set<int>::iterator it = clusters[i]->core.begin(); it != clusters[i]->core.end(); it++) { sprintf(string, "编号%d ", *it); cout << string << "(" << dataset[*(it)].data[0] << "," << dataset[*(it)].data[1] << ")" << endl; } cout << "边界:" << endl; for (set<int>::iterator it = clusters[i]->border.begin(); it != clusters[i]->border.end(); it++) { sprintf(string, "编号%d ", *it); cout << string << *it << "(" << dataset[*(it)].data[0] << "," << dataset[*(it)].data[1] << ")" << endl; } cout << endl << endl; } } private: int MinPts; double radius; vector<DBPoint>dataset; vector<DBCluster*>clusters; private: //bool isdensityconnected(DBCluster&cluster1, DBCluster&cluster2);//密度相连 bool iscore(DBPoint&point); bool iscore(int k); double distance(DBPoint&point1, DBPoint&point2) { double dis = 0; for (int i = 0; i < point1.dim; i++) dis += pow(point1.data[i] - point2.data[i], 2.0); return sqrt(dis); } void expand(int i, DBCluster*clus); void mergecluster(int k1, int k2);//合并密度相连的两个簇 }; void dbscan::mergecluster(int k1, int k2) { clusters[k1]->core.insert(clusters[k2]->core.begin(), clusters[k2]->core.end()); clusters[k1]->border.insert(clusters[k2]->border.begin(), clusters[k2]->border.end()); for (int i = k2 + 1; i < clusters.size(); i++) clusters[i]->label--; } void dbscan::generate_dataset(int datasetsize, int Y, int X) { for (int i = 0; i < datasetsize; i++) { DBPoint point(2); point.data.resize(2); point.data[0] = X*double(rand()) / double(RAND_MAX + 1.0); point.data[1] = Y*double(rand()) / double(RAND_MAX + 1.0); dataset.push_back(point); } } void dbscan::apply() { int k = 0; while (k < dataset.size() - 1) { for (int i = k + 1; i < dataset.size(); i++) { double dis = distance(dataset[k], dataset[i]); if (dis < radius) { dataset[k].near.push_back(i); dataset[i].near.push_back(k); } } k++; } for (int i = 0; i < dataset.size(); i++) { if (iscore(dataset[i]) && dataset[i].state == unlabeled) { DBCluster*clus = new DBCluster; clus->label = clusters.size(); expand(i, clus); clusters.push_back(clus); } } for (int i = 0; i < dataset.size(); i++) { if (dataset[i].state == unlabeled) dataset[i].state = noise; } /*k = 0; while (k < clusters.size() - 1)//合并密度相连的集合 { for (int i = k + 1; i < clusters.size(); i++) { if (!clusters[i]->core.empty() && !clusters[k]->core.empty()) { set<int>aa; //insert_iterator<set<int, less<int> > >res_ins(aa, aa.begin()); set_union(clusters[i]->border.begin(), clusters[i]->border.end(),//求并集 clusters[k]->border.begin(), clusters[k]->border.end(), inserter(aa, aa.begin())); if (aa.size() != clusters[i]->border.size() + clusters[k]->border.size())//密度相连 mergecluster(k, i); } } } for (int i = 0; i < clusters.size(); i++) { if (clusters[i]->core.empty()) { delete clusters[i]; clusters.erase(clusters.begin() + i, clusters.begin() + i + 1); } }*/ //下面验证一下结果 int sum = 0; for (int i = 0; i < clusters.size(); i++) { sum += clusters[i]->border.size() + clusters[i]->core.size(); } for (int i = 0; i < dataset.size(); i++) { if (dataset[i].state == noise) sum++; } _ASSERTE(sum == dataset.size()); } bool dbscan::iscore(DBPoint&point) { return point.near.size() >= MinPts; } bool dbscan::iscore(int k) { return dataset[k].near.size() >= MinPts; } /*void dbscan::expand(int k, DBCluster*clus) { if (clus->core.find(k) == clus->core.end()) { clus->core.insert(k);//直接密度可达或者密度可达 dataset[k].state = core; for (int i = 0; i < dataset[k].near.size(); i++) { if (!iscore(dataset[k].near[i]) && clus->border.find(i) == clus->border.end()) { clus->border.insert(dataset[k].near[i]);//直接密度可达 dataset[i].state = border; } if (iscore(dataset[k].near[i])) expand(dataset[k].near[i], clus); } } }*/ void dbscan::expand(int k, DBCluster*clus) { vector<int>aa, bb; aa.push_back(k); while (!aa.empty()) { int gg = aa.back(); aa.pop_back(); if (iscore(dataset[gg]) && clus->core.find(gg) == clus->core.end()) { clus->core.insert(gg); dataset[gg].state = core; for (int i = 0; i < dataset[gg].near.size(); i++)//只有核心对象可以扩展 { if (dataset[dataset[gg].near[i]].state == unlabeled) aa.insert(aa.end(), dataset[gg].near[i]); } } else if (!iscore(dataset[gg]) && clus->border.find(gg) == clus->border.end()) { clus->border.insert(gg); dataset[gg].state = border; } } } dbscan::~dbscan() { for (int i = 0; i < clusters.size(); i++) delete clusters[i]; } int _tmain(int argc, _TCHAR* argv[]) { /*set<int>aa; aa.insert(10); aa.insert(25); aa.insert(35); aa.insert(5); set<int>bb; bb.insert(10); bb.insert(25); bb.insert(35); bb.insert(99); set<int>cc; set_union(aa.begin(), aa.end(), bb.begin(), bb.end(), inserter(cc, cc.begin())); vector<int>dd; dd.push_back(24); dd.insert(dd.begin(), aa.begin(), aa.end()); set<int>ee; ee.insert(10); ee.insert(250); aa.insert(ee.begin(), ee.end()); set<int>::iterator it; for (it = aa.begin(); it != aa.end(); it++) cout << *it << endl;*/ dbscan db(4, 10); db.generate_dataset(100, 100, 100); db.apply(); db.showresult(); system("pause"); return 0; }