Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 10827 | Accepted: 3764 |
Description
Input
Output
Sample Input
2006 1 2006 2 2006 3
Sample Output
1 3 5
这道题目是HDU 3388的简化版,方法几乎一模一样
http://blog.csdn.net/dacc123/article/details/51285731
#include <iostream> #include <string.h> #include <stdlib.h> #include <algorithm> #include <math.h> #include <stdio.h> using namespace std; typedef long long int LL; const LL INF=(LL)1<<62; #define MAX 1000000 LL prime[MAX+5]; LL sprime[MAX+5]; LL q[MAX+5]; LL check[MAX+5]; LL m,k,cnt; void eular() { memset(check,false,sizeof(check)); int tot=0; for(int i=2;i<=MAX+5;i++) { if(!check[i]) prime[tot++]=i; for(int j=0;j<tot;j++) { if(i*prime[j]>MAX+5) break; check[i*prime[j]]=true; if(i%prime[j]==0) break; } } } void Divide(LL n) { cnt=0; LL t=(LL)sqrt(1.0*n); for(LL i=0;prime[i]<=t;i++) { if(n%prime[i]==0) { sprime[cnt++]=prime[i]; while(n%prime[i]==0) n/=prime[i]; } } if(n>1) sprime[cnt++]=n; } LL Ex(LL n) { LL sum=0,t=1; q[0]=-1; for(LL i=0;i<cnt;i++) { LL x=t; for(LL j=0;j<x;j++) { q[t]=q[j]*sprime[i]*(-1); t++; } } for(LL i=1;i<t;i++) sum+=n/q[i]; return sum; } LL binary() { LL l=1,r=INF; LL mid,ans; while(l<=r) { mid=(l+r)/2; if((mid-Ex(mid))>=k) { r=mid-1; } else l=mid+1; } return l; } int main() { eular(); while(scanf("%lld%lld",&m,&k)!=EOF) { if(m==1) { printf("%lld\n",k); continue; } Divide(m); printf("%lld\n",binary()); } return 0; }