网络流24题 21最长k可重区间集问题

最长k可重区间集问题

Time Limit 1000ms

Memory Limit 65536K

description

    给定实直线L 上n 个开区间组成的集合I,和一个正整数k,试设计一个算法,从开区间集合I 中选取出开区间集合S属于I,使得在实直线L 的任何一点x,S 中包含点x 的开区间个数不超过k,且 达到最大。这样的集合S称为开区间集合I的最长k可重区间集。称为最长k可重区间集的长度。
    对于给定的开区间集合I和正整数k,计算开区间集合I的最长k可重区间集的长度。

							

input

多组数据输入.
每组输入第1 行有2 个正整数n和k,分别表示开区间的个数和开区间的可重迭数。接下来的n行,每行有2个整数,表示开区间的左右端点坐标。

							

output

每组输出最长k可重区间集的长度

							

sample_input

4 2
1 7
6 8
7 10
9 13

							

sample_output

15
----------------------------------------------

【问题分析】


最大权不相交路径问题,可以用最大费用最大流解决。


【建模方法】


方法1


按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a><i.b>,建立附加源S汇T,以及附加顶点S'。


1、连接S到S'一条容量为K,费用为0的有向边。
2、从S'到每个<i.a>连接一条容量为1,费用为0的有向边。
3、从每个<i.b>到T连接一条容量为1,费用为0的有向边。
4、从每个顶点<i.a>到<i.b>连接一条容量为1,费用为区间长度的有向边。
5、对于每个区间i,与它右边的不相交的所有区间j各连一条容量为1,费用为0的有向边。


求最大费用最大流,最大费用流值就是最长k可重区间集的长度。


方法2


离散化所有区间的端点,把每个端点看做一个顶点,建立附加源S汇T。


1、从S到顶点1(最左边顶点)连接一条容量为K,费用为0的有向边。
2、从顶点2N(最右边顶点)到T连接一条容量为K,费用为0的有向边。
3、从顶点i到顶点i+1(i+1<=2N),连接一条容量为无穷大,费用为0的有向边。
4、对于每个区间[a,b],从a对应的顶点i到b对应的顶点j连接一条容量为1,费用为区间长度的有向边。


求最大费用最大流,最大费用流值就是最长k可重区间集的长度。


【建模分析】


这个问题可以看做是求K条权之和最大的不想交路径,每条路径为一些不相交的区间序列。由于是最大费用流,两条路径之间一定有一些区间相交,可以看做事相交部分重复了2次,而K条路经就是最多重复了K次。最简单的想法就是把区间排序后,不相交的区间之间连接一条边,由于每个区间只能用一次,所以要拆点,点内限制流量。如果我们改变一下思路,把端点作为网络中的顶点,区间恰恰是特定一些端点之间的边,这样建模的复杂度更小。方法1的边数是O(N^2)的,而方法2的边数是O(N)的,可以解决更大规模的问题。







你可能感兴趣的:(题解,图论)