转自: http://zhangzhibiao02005.blog.163.com/blog/static/37367820201121610755797/
异或是一种基于二进制的位运算,用符号XOR或者 ^ 表示,其运算法则是对运算符两侧数的每一个二进制位,同值取0,异值取1。它与布尔运算的区别在于,当运算符两侧均为1时,布尔运算的结果为1,异或运算的结果为0。
简单理解就是不进位加法,如1+1=0,,0+0=0,1+0=1。
性质
1、交换律
2、结合律
3、对于任何数x,都有x^x=0,x^0=x
4、自反性 A^B^B = A^0 = A
异或运算最常见于多项式除法,不过它最重要的性质还是自反性:A^B^B = A^0 = A,即对给定的数A,用同样的运算因子(B)作两次异或运算后仍得到A本身。这是一个神奇的性质,利用这个性质,可以获得许多有趣的应用。
例如,所有的程序教科书都会向初学者指出,要交换两个变量的值,必须要引入一个中间变量。但如果使用异或,就可以节约一个变量的存储空间: 设有A,B两个变量,存储的值分别为a,b,则以下三行表达式将互换他们的值
表达式 (值)
A=A^B (A=a^b)
B=B^A (B=b^a^b = a)
A=A^B (A=a^b^a = b)
类似地,该运算还可以应用在加密,数据传输,校验等等许多领域。
运用距离:
1-1000放在含有1001个元素的数组中,只有唯一的一个元素值重复,其它均只出现
一次。每个数组元素只能访问一次,设计一个算法,将它找出来;不用辅助存储空
间,能否设计一个算法实现?
当然有人会说,1+2+...+1000的结果有高斯定律可以快速计算,但实际上1^2^...^1000的结果也是有规律的,算法比高斯定律还该简单的多。
=======================
扩展: 如果从1到1000中随机取出一个数字,要快速的计算出取出的哪一个数, 方法与上例类似.