农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术。不幸的是,由于工程问题,每个牛栏都不一样。第一个星期,农夫约翰随便地让奶牛们进入牛栏,但是问题很快地显露出来:每头奶牛都只愿意在她们喜欢的那些牛栏中产奶。上个星期,农夫约翰刚刚收集到了奶牛们的爱好的信息(每头奶牛喜欢在哪些牛栏产奶)。一个牛栏只能容纳一头奶牛,当然,一头奶牛只能在一个牛栏中产奶。
给出奶牛们的爱好的信息,计算最大分配方案。
PROGRAM NAME: stall4
INPUT FORMAT:
(file stall4.in)
第一行 两个整数,N (0 <= N <= 200) 和 M (0 <= M <= 200) 。N 是农夫约翰的奶牛数量,M 是新牛棚的牛栏数量。
第二行到第N+1行 一共 N 行,每行对应一只奶牛。第一个数字 (Si) 是这头奶牛愿意在其中产奶的牛栏的数目 (0 <= Si <= M)。后面的 Si 个数表示这些牛栏的编号。牛栏的编号限定在区间 (1..M) 中,在同一行,一个牛栏不会被列出两次。
OUTPUT FORMAT:
(file stall4.out)
只有一行。输出一个整数,表示最多能分配到的牛栏的数量.
5 5 2 2 5 3 2 3 4 2 1 5 3 1 2 5 1 2
4
匈牙利算法专门用于部图的匹配,所以速度极快,全部test都是0.00s
大致思路:枚举n头奶牛为起点,若找到一条增广路径(终点为未匹配,且奇数边均不在原匹配中,偶数边均在原匹配中),则答案+1
DFS实现找增广路径:dfs参数是i表示奶牛,枚举奶牛喜欢的牛棚,若牛棚不在当前增广路径中,则将其“纳入”增广路径(不一定出现在增广路径中,失败时不必再除去,因为当前状况下就失败,后面的状况不会更好,算作剪枝),若枚举的牛棚未被占据 或 以占据该牛棚的牛为起点时存在一条增广路径,则将牛棚与当前牛匹配,并返回true,表示成功找到一条增广路径
dfs和bfs找增广路径在稠密图时,速度相差不大,稀疏图时,bfs非常快,dfs差一点,由于dfs简单易懂,所以bfs就放弃了吧
/* ID: your_id_here PROG: stall4 LANG: C++ */ #include <cstdio> #include <cstring> #include <algorithm> using namespace std; int n,m; int adj[205][205],match[205];//adj[i][k]表示奶牛i喜欢牛棚adj[i][k],adj[i][0]表示奶牛i喜欢的牛棚的个数 bool onPath[205];//onPath[j]表示牛棚是否在增广路径上;match[j]表示牛棚j被奶牛match[j]占据 bool dfs(int i) { int j,k; for(k=adj[i][0];k>=1;--k) { j=adj[i][k]; if(!onPath[j]) {//若牛棚j不在本次增广路径上 onPath[j]=true; if(0==match[j]||dfs(match[j])) {//若牛棚j未被占据 或者 有一条以 奶牛match[j]为起点的增广路径 match[j]=i;//牛棚j被奶牛i占据 return true; }//即使匹配失败,也不需要将onPath[j]重置为false,因为当前状况下就失败,后面的状况不会更好,算是一种剪枝吧 } } return false; } int hungary() { int ans=0; memset(match,0,sizeof(match)); for(int i=1;i<=n;++i) { memset(onPath,false,sizeof(onPath)); if(dfs(i))//若有一条以奶牛i为起点的增广路径 ++ans; } return ans; } int main() { freopen("stall4.in","r",stdin); freopen("stall4.out","w",stdout); int num; memset(adj,0,sizeof(adj)); scanf("%d%d",&n,&m); for(int i=1;i<=n;++i) { scanf("%d",&num); adj[i][0]=num; while(num>0) { scanf("%d",&adj[i][num--]); } } printf("%d\n",hungary()); return 0; }
添加一个源点和汇点,并且源点到每头牛有一条权为1的有向边,每个牛棚到汇点有一条权值为1的有向边,牛到其喜爱的牛棚有1条权值为1的有向边,就转换成源点到汇点的最大网络流了
最慢的test跑了0.043s
/* ID: your_id_here PROG: stall4 LANG: C++ */ #include <cstdio> #include <cstring> #include <queue> #include <algorithm> using namespace std; const int INF=0x3f3f3f3f; int n,m,g[405][405],pre[405]; bool vis[405]; struct Node { int pre,u,mn;//u表示当前节点,mn表示从源点到改点的流量上限中最小的 Node(int ppre=0,int uu=0,int mmn=INF):pre(ppre),u(uu),mn(mmn) {} bool operator < (const Node& a) const { return mn<a.mn; } }cur; int bfs(int sta,int des) {//用bfs找到流量最大的一条增广路径,并返回这条增广路径的流量 memset(vis,false,sizeof(vis)); priority_queue<Node> q; q.push(Node(0,sta)); while(!q.empty()) { do { cur=q.top(); q.pop(); } while(!q.empty()&&vis[cur.u]); if(vis[cur.u])//如果无法到达汇点,返回0 return 0; vis[cur.u]=true; pre[cur.u]=cur.pre; if(cur.u==des) return cur.mn; for(int i=1;i<=n;++i) {//枚举可流向的下一个点 if(!vis[i]&&g[cur.u][i]!=0) { q.push(Node(cur.u,i,min(cur.mn,g[cur.u][i]))); } } } return 0; } int Ford_Fulkerson(int sta,int des) { int mn,e,ans=0; while(mn=bfs(sta,des),mn!=0) {//当可增加的流量不为0时,继续算法 ans+=mn; e=des; while(e!=sta) { g[pre[e]][e]-=mn;//正向的边减去相应的流量 g[e][pre[e]]+=mn;//反向的边加上相应的流量 e=pre[e]; } } return ans; } int main() { freopen("stall4.in","r",stdin); freopen("stall4.out","w",stdout); int num,e,tot; memset(g,0,sizeof(g)); scanf("%d%d",&n,&m); tot=n+m+2; for(int i=1;i<=n;++i) { g[tot-1][i]=1;//源点为n+m+1 scanf("%d",&num); while(num-->0) { scanf("%d",&e); g[i][n+e]=1; } } for(int i=n+1;i<=tot-2;++i) g[i][tot]=1;//源点为n+m+2 n=tot; printf("%d\n",Ford_Fulkerson(n-1,n)); return 0; }