最近在弄Sensor驱动,看过一个某厂家的成品驱动,里面实现的全都是sysfs接口,hal层利用sysfs生成的接口,对Sensor进行操作。
说道sysfs接口,就不得不提到函数宏 DEVICE_ATTR
原型是#define DEVICE_ATTR(_name, _mode, _show, _store) \
struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store)
函数宏DEVICE_ATTR内封装的是__ATTR(_name,_mode,_show,_stroe)方法,_show表示的是读方法,_stroe表示的是写方法。
当然_ATTR不是独生子女,他还有一系列的姊妹__ATTR_RO宏只有读方法,__ATTR_NULL等等
如对设备的使用 DEVICE_ATTR ,对总线使用 BUS_ATTR ,对驱动使用 DRIVER_ATTR ,对类别 (class) 使用 CLASS_ATTR, 这四个高级的宏来自于<include/linux/device.h>
DEVICE_ATTR 宏声明有四个参数,分别是名称、权限位、读函数、写函数。其中读函数和写函数是读写功能函数的函数名。
如果你完成了DEVICE_ATTR函数宏的填充,下面就需要创建接口了
例如:
static DEVICE_ATTR(polling, S_IRUGO | S_IWUSR, show_polling, set_polling);
static struct attribute *dev_attrs[] = {
&dev_attr_polling.attr,
NULL,
};
当你想要实现的接口名字是polling的时候,需要实现结构体struct attribute *dev_attrs[]
其中成员变量的名字必须是&dev_attr_polling.attr,就是dev_atrr+接口名。然后再封装
static struct attribute_group dev_attr_grp = {
.attrs = dev_attrs,
};
通过以上简单的三个步骤,就可以在adb shell 终端查看到接口了。当我们将数据 echo 到接口中时,在上层实际上完成了一次 write 操作,对应到 kernel ,调用了驱动中的 “store”。同理,当我们cat 一个 接口时则会调用 “show” 。到这里,只是简单的建立了 android 层到 kernel 的桥梁,真正实现对硬件操作的,还是在 "show" 和 "store" 中完成的。
######################################################################
以下来个例子:
/* * Sample kobject implementation * * Copyright (C) 2004-2007 Greg Kroah-Hartman <[email protected]> * Copyright (C) 2007 Novell Inc. * * Released under the GPL version 2 only. * */ #include <linux/kobject.h> #include <linux/string.h> #include <linux/sysfs.h> #include <linux/module.h> #include <linux/init.h> #include <asm/gpio.h> #include <linux/delay.h> /* * This module shows how to create a simple subdirectory in sysfs called * /sys/kernel/kobject-example In that directory, 3 files are created: * "foo", "baz", and "bar". If an integer is written to these files, it can be * later read out of it. */ static int foo; /* * The "foo" file where a static variable is read from and written to. */ static struct msm_gpio qup_i2c_gpios_io[] = { { GPIO_CFG(60, 0, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA), "qup_scl" }, { GPIO_CFG(61, 0, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA), "qup_sda" }, { GPIO_CFG(131, 0, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA), "qup_scl" }, { GPIO_CFG(132, 0, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA), "qup_sda" }, }; static struct msm_gpio qup_i2c_gpios_hw[] = { { GPIO_CFG(60, 1, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA), "qup_scl" }, { GPIO_CFG(61, 1, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA), "qup_sda" }, { GPIO_CFG(131, 2, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA), "qup_scl" }, { GPIO_CFG(132, 2, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA), "qup_sda" }, }; static void gsbi_qup_i2c_gpio_config(int adap_id, int config_type) { int rc; if (adap_id < 0 || adap_id > 1) return; /* Each adapter gets 2 lines from the table */ if (config_type) rc = msm_gpios_enable(&qup_i2c_gpios_hw[adap_id*2], 2); else rc = msm_gpios_enable(&qup_i2c_gpios_io[adap_id*2], 2); if (rc < 0) pr_err("QUP GPIO request/enable failed: %d\n", rc); } static ssize_t foo_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%d\n", foo); } static ssize_t foo_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int sda,scl; int i; sscanf(buf, "%du", &foo); printk("foo = %d.\n",foo); foo = foo -1; if (foo < 0 || foo > 1) { printk("input foo error. foo=%d.\n",foo); return 0; } sda = GPIO_PIN((&qup_i2c_gpios_hw[foo*2+1])->gpio_cfg); scl = GPIO_PIN((&qup_i2c_gpios_hw[foo*2])->gpio_cfg); printk("sda = %d.\n",sda); printk("scl = %d.\n",scl); gsbi_qup_i2c_gpio_config(foo,0); for(i=0;i<9;i++) { if(gpio_get_value(sda)) { printk("sda of i2c%d is high when %d pulse is output on scl.\n",foo,i); break; } gpio_set_value(scl,0); udelay(5); gpio_set_value(scl,1); udelay(5); } gsbi_qup_i2c_gpio_config(foo,1); printk("finish.\n"); return count; } static struct kobj_attribute foo_attribute = __ATTR(i2c_unlock, 0666, foo_show, foo_store); /* * Create a group of attributes so that we can create and destroy them all * at once. */ static struct attribute *attrs[] = { &foo_attribute.attr, NULL,» /* need to NULL terminate the list of attributes */ }; /* * An unnamed attribute group will put all of the attributes directly in * the kobject directory. If we specify a name, a subdirectory will be * created for the attributes with the directory being the name of the * attribute group. */ static struct attribute_group attr_group = { .attrs = attrs, }; static struct kobject *example_kobj; static int __init example_init(void) { int retval; /* * Create a simple kobject with the name of "kobject_example", * located under /sys/kernel/ * * As this is a simple directory, no uevent will be sent to * userspace. That is why this function should not be used for * any type of dynamic kobjects, where the name and number are * not known ahead of time. */ example_kobj = kobject_create_and_add("i2c_recovery", kernel_kobj); if (!example_kobj) return -ENOMEM; /* Create the files associated with this kobject */ retval = sysfs_create_group(example_kobj, &attr_group); if (retval) kobject_put(example_kobj); return retval; } static void __exit example_exit(void) { kobject_put(example_kobj); } module_init(example_init); module_exit(example_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Wupeng");