//: polymorphism/music/Note.java
// Notes to play on musical instruments.
package polymorphism.music;
public enum Note {
MIDDLE_C, C_SHARP, B_FLAT; // Etc.
} ///:~
//: polymorphism/music/Instrument.java
package polymorphism.music;
import static net.mindview.util.Print.*;
class Instrument {
public void play(Note n) {
print("Instrument.play()");
}
}
///:~
//: polymorphism/music/Wind.java
package polymorphism.music;
// Wind objects are instruments
// because they have the same interface:
public class Wind extends Instrument {
// Redefine interface method:
public void play(Note n) {
System.out.println("Wind.play() " + n);
}
} ///:~
//: polymorphism/music/Music.java
// Inheritance & upcasting.
package polymorphism.music;
public class Music {
public static void tune(Instrument i) {
// ...
i.play(Note.MIDDLE_C);
}
public static void main(String[] args) {
Wind flute = new Wind();
tune(flute); // Upcasting
}
} /* Output: Wind.play() MIDDLE_C *///:~
//: polymorphism/music/Music2.java
// Overloading instead of upcasting.
package polymorphism.music;
import static net.mindview.util.Print.*;
class Stringed extends Instrument {
public void play(Note n) {
print("Stringed.play() " + n);
}
}
class Brass extends Instrument {
public void play(Note n) {
print("Brass.play() " + n);
}
}
public class Music2 {
public static void tune(Wind i) {
i.play(Note.MIDDLE_C);
}
public static void tune(Stringed i) {
i.play(Note.MIDDLE_C);
}
public static void tune(Brass i) {
i.play(Note.MIDDLE_C);
}
public static void main(String[] args) {
Wind flute = new Wind();
Stringed violin = new Stringed();
Brass frenchHorn = new Brass();
tune(flute); // No upcasting
tune(violin);
tune(frenchHorn);
}
} /* Output: Wind.play() MIDDLE_C Stringed.play() MIDDLE_C Brass.play() MIDDLE_C *///:~
这样做是可以,但是有一个缺点:必须为添加每一个新的Instrument类编写特定类型的方法。这意味着在开始的时候就需要更多的编程,同时在你以后添加类似tune()的新方法或者添加自Instrument导出的新类,仍需要做大量的工作。此外,如果我们忘记重载某个方法,编译器不会放回任何错误信息,这样关于类型的整个处理过程将变得难以控制。
如果我们只写这样一个简单方法,它仅接受基类作为参数,而不是那些特殊的导出类。这样做情况会变好吗?也就是说,如果我们不管导出类的存在,编写的代码只是与基类打交道,会不会更好?而这正是多态所允许的。
public static void tune(Instrument i) {
// ...
i.play(Note.MIDLE_C);
}
//: polymorphism/shape/Shape.java
package polymorphism.shape;
public class Shape {
public void draw() {}
public void erase() {}
} ///:~
//: polymorphism/shape/Circle.java
package polymorphism.shape;
import static net.mindview.util.Print.*;
public class Circle extends Shape {
public void draw() { print("Circle.draw()"); }
public void erase() { print("Circle.erase()"); }
} ///:~
//: polymorphism/shape/Triangle.java
package polymorphism.shape;
import static net.mindview.util.Print.*;
public class Triangle extends Shape {
public void draw() { print("Triangle.draw()"); }
public void erase() { print("Triangle.erase()"); }
} ///:~
//: polymorphism/shape/Square.java
package polymorphism.shape;
import static net.mindview.util.Print.*;
public class Square extends Shape {
public void draw() { print("Square.draw()"); }
public void erase() { print("Square.erase()"); }
} ///:~
//: polymorphism/shape/RandomShapeGenerator.java
// A "factory" that randomly creates shapes.
package polymorphism.shape;
import java.util.*;
public class RandomShapeGenerator {
private Random rand = new Random(47);
public Shape next() {
switch(rand.nextInt(3)) {
default:
case 0: return new Circle();
case 1: return new Square();
case 2: return new Triangle();
}
}
} ///:~
//: polymorphism/Shapes.java
// Polymorphism in Java.
import polymorphism.shape.*;
public class Shapes {
private static RandomShapeGenerator gen =
new RandomShapeGenerator();
public static void main(String[] args) {
Shape[] s = new Shape[9];
// Fill up the array with shapes:
for(int i = 0; i < s.length; i++)
s[i] = gen.next();
// Make polymorphic method calls:
for(Shape shp : s)
shp.draw();
}
} /* Output: Triangle.draw() Triangle.draw() Square.draw() Triangle.draw() Square.draw() Triangle.draw() Square.draw() Triangle.draw() Circle.draw() *///:~
//: polymorphism/music3/Music3.java
// An extensible program.
package polymorphism.music3;
import polymorphism.music.Note;
import static net.mindview.util.Print.*;
class Instrument {
void play(Note n) { print("Instrument.play() " + n); }
String what() { return "Instrument"; }
void adjust() { print("Adjusting Instrument"); }
}
class Wind extends Instrument {
void play(Note n) { print("Wind.play() " + n); }
String what() { return "Wind"; }
void adjust() { print("Adjusting Wind"); }
}
class Percussion extends Instrument {
void play(Note n) { print("Percussion.play() " + n); }
String what() { return "Percussion"; }
void adjust() { print("Adjusting Percussion"); }
}
class Stringed extends Instrument {
void play(Note n) { print("Stringed.play() " + n); }
String what() { return "Stringed"; }
void adjust() { print("Adjusting Stringed"); }
}
class Brass extends Wind {
void play(Note n) { print("Brass.play() " + n); }
void adjust() { print("Adjusting Brass"); }
}
class Woodwind extends Wind {
void play(Note n) { print("Woodwind.play() " + n); }
String what() { return "Woodwind"; }
}
public class Music3 {
// Doesn't care about type, so new types
// added to the system still work right:
public static void tune(Instrument i) {
// ...
i.play(Note.MIDDLE_C);
}
public static void tuneAll(Instrument[] e) {
for(Instrument i : e)
tune(i);
}
public static void main(String[] args) {
// Upcasting during addition to the array:
Instrument[] orchestra = {
new Wind(),
new Percussion(),
new Stringed(),
new Brass(),
new Woodwind()
};
tuneAll(orchestra);
}
} /* Output: Wind.play() MIDDLE_C Percussion.play() MIDDLE_C Stringed.play() MIDDLE_C Brass.play() MIDDLE_C Woodwind.play() MIDDLE_C *///:~