Problem Q
Time Limit : 2000/1000ms (Java/Other) Memory Limit :32768/32768K (Java/Other)
Problem Description
Many years ago ,in Teddy’s hometown there was a man who was called “Bone Collector”. This manlike to collect varies of bones , such as dog’s , cow’s , also he went to thegrave …<br>The bone collector had a big bag with a volume of V ,and alonghis trip of collecting there are a lot of bones , obviously , different bonehas different value and different volume, now given the each bone’s value alonghis trip , can you calculate out the maximum of the total value the bonecollector can get ?<br><center><imgsrc=../../../data/images/C154-1003-1.jpg> </center><br>
Input
The first linecontain a integer T , the number of cases.<br>Followed by T cases , eachcase three lines , the first line contain two integer N , V, (N <= 1000 , V<= 1000 )representing the number of bones and the volume of his bag. And thesecond line contain N integers representing the value of each bone. The thirdline contain N integers representing the volume of each bone.
Output
One integer perline representing the maximum of the total value (this number will be less than2<sup>31</sup>).
Sample Input
1
5 10
1 2 3 4 5
5 4 3 2 1
Sample Output
14
题意:
一个叫做Bone Collector的男的有一个包,往包里放东西,使得其价值最大。
输入:注意是先输入的是价值,后是体积。
解题思路:
01背包问题特点是:每种物品仅有一件,可以选择放或不放。用子问题定义状态:即F[i;v] 表示前i 件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:
F[i;v] = maxfF[i-1;v];F[i-1;v-Ci] + Wig
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:
“将前i 件物品放入容量为v的背包中”这个子问题,若只考虑第i 件物品的策略(放或不放),那么就可以转化为一个只和前i-1件物品相关的问题。如果不放第i 件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为F[i-1; v];如果放第i 件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-Ci 的背包中”,此时能获得的最大价值就是F[i-1;v-Ci] 再加上通过放入第i 件物品获得的价值Wi。
刚刚接触这个问题不免还有有点儿不熟悉。
F[i-1,v]倒是好理解. F[i-1,v-Ci]+Wi稍微难得看懂点。其实如果丢掉后面的 Wi,F[i-1,v-Ci]可以按照F[i-1,v]一样理解。下面就贴代码了。。。
#include<stdio.h> #include<string.h> #define M 1009 typedef struct pack { int cost; int val; }PACK; int f[M][M]; int main() { int cas,n,v,i,j; PACK a[M]; scanf("%d",&cas); while(cas--) { scanf("%d%d",&n,&v); memset(f,0,sizeof(f)); for(i=1;i<=n;i++) scanf("%d",&a[i].val); for(i=1;i<=n;i++) scanf("%d",&a[i].cost); for(i=1;i<=n;i++) for(j=0;j<=v;j++) if(j-a[i].cost>=0&&f[i-1][j]<f[i-1][j-a[i].cost]+a[i].val) f[i][j]=f[i-1][j-a[i].cost]+a[i].val; else f[i][j]=f[i-1][j]; printf("%d\n",f[n][v]); } return 0; }