线性探测可再散列的散列

数据结构与算法分析——c语言描述 第五章 分离链接散列表


从书上的代码小改一下。插入的时候自动选择是否再散列,所以insert要返回一个hashtable。

还有增加是否查抄成功。(虽然可以通过返回-1来返回查找失败)


hashQuad.h

typedef char* ElementType;

#ifndef _HashQuad_H
#define _HashQuad_H

typedef unsigned int Index;
typedef Index Position;

struct HashTbl;
typedef struct HashTbl* HashTable;

HashTable initializeTable(int tableSize);
void destroyTable(HashTable h);
Position find(ElementType key, HashTable h);
HashTable insert(ElementType key, HashTable h);
HashTable rehash(HashTable h);
ElementType retrive(Position p,HashTable h);
int isLegitimate(Position pos, HashTable h);
#endif


hashQuad.c

#include"hashQuad.h"
#include"fatal.h"
#include<math.h>
#include<string.h>
#define MinTableSize 10

enum KindOfEntry { Legitimate, Empty, Deleted };

struct HashEntry {
	ElementType element;
	enum KindOfEntry info;
};

typedef struct HashEntry Cell;

struct HashTbl {
	int tableSize;
	int hasInsertedNum;
	Cell *theCells;//数组
};

static int hash(ElementType key, int tableSize) {
	unsigned int hashVal = 0;
	while (*key != '\0')
		hashVal = (hashVal << 5) + *key++;
	return hashVal % (tableSize);
}
static int isPrime(int num) {
	for (int i = 2; i <= sqrt(num); i++)
		if (num%i == 0)
			return 0;
	return 1;
}
static int nextPrime(int num) {
	int i = num;
	while (!isPrime(i))
		i++;
	return i;
}

int isLegitimate(Position pos,HashTable h) {
	return h->theCells[pos].info == Legitimate;
}


HashTable initializeTable(int tableSize) {
	HashTable h;
	int i;
	if (tableSize < MinTableSize) {
		Error("Table size too small");
		return NULL;
	}
	h = malloc(sizeof(struct HashTbl));
	if (h == NULL)
		FatalError("Out of space!!!");
	h->tableSize = nextPrime(tableSize);
	h->theCells = malloc(sizeof(Cell)*h->tableSize);
	h->hasInsertedNum = 0;
	if (h->theCells == NULL)
		FatalError("Out of space!!!");
	for (i = 0; i < h->tableSize; i++) {
		h->theCells[i].info = Empty;
	}
	return h;
}

void destroyTable(HashTable h) {
	for (int i = 0; i < h->tableSize; i++)
		if (h->theCells[i].info == Legitimate)
			free(h->theCells[i].element);
	free(h->theCells);
	free(h);
}

Position find(ElementType key, HashTable h) {
	Position currentPos = hash(key, h->tableSize);
	while (h->theCells[currentPos].info != Empty && strcmp(h->theCells[currentPos].element, key) != 0) {
		currentPos = (currentPos + 1) % h->tableSize;
	}
	return currentPos;
}

HashTable insert(ElementType key, HashTable h) {
	if ((double)h->hasInsertedNum / h->tableSize > 0.5)
		h = rehash(h);
	Position pos = find(key, h);
	if (h->theCells[pos].info != Legitimate) {
		h->theCells[pos].element = malloc(sizeof(char)*strlen(key) + 1);
		strcpy(h->theCells[pos].element, key);
		h->theCells[pos].info = Legitimate;
		h->hasInsertedNum++;
	}
	return h;
}

HashTable rehash(HashTable h) {
	HashTable newH = initializeTable(h->tableSize * 2);
	for (int i = 0; i < h->tableSize; i++)
		if (h->theCells[i].info == Legitimate)
			insert(h->theCells[i].element, newH);
	destroyTable(h);
	return newH;
}



ElementType retrive(Position p, HashTable h) {
	return h->theCells[p].element;
}


main.c

#include"hashQuad.h"
#include<stdio.h>
int main() {
	HashTable h = initializeTable(500);
	h=insert("aaaaaaa", h);
	Position p = find("aaaaaaa", h);
	if (isLegitimate(p, h))
		printf("%s", retrive(p, h));
	p = find("bbbb", h);
	if (isLegitimate(p, h))
		printf("%s", retrive(p, h));
	destroyTable(h);
}


你可能感兴趣的:(线性探测可再散列的散列)