Parencodings
Description
Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()())))
P-sequence 4 5 6666
W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
2
6
4 5 6 6 6 6
9
4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 6
1 1 2 4 5 1 1 3 9
Source
Tehran 2001
这是一道极为容易的题目,基本原理:根据P排序还原括号字符串S,然后根据W的命名规则查找每一个右括号所对应的编号。仅仅需要简单的往前回溯即可:假设第i个字符是右括号,则用变量par=1记下当前的右括号数,在往前回溯的过程中,记录下左括号的个数(leftpar),当par为0时(此时,左右括号匹配好了),跳出回溯。此时leftpar为当前右括号的W编号。具体实现如下:
#include <iostream>
using namespace std;
int main()
{
char S[20];
int P[20], W[20], t, n;
int i, tmp, index, par, leftpar;
cin >> t;
while(t --)
{
cin >> n;
tmp = 0;
index = 0;
for(i = 0; i < n; i ++)
{
cin >> P[i];
if(index < P[i])
{
while(index < P[i])
{
S[tmp++] = '(';
index ++;
}
}
S[tmp ++] = ')';
}
index = 0;
for(i = 0; i < 2*n; i ++)
{
if(S[i] == ')')
{
tmp = i-1;
par = 1;
leftpar = 0;
while(par)
{
if(S[tmp] == ')')
{
par ++;
}
else
{
leftpar ++;
par --;
}
tmp-- ;
}
W[index ++] = leftpar;
}
}
for(i = 0; i < n; i ++)
{
cout << W[i] << " ";
}
cout<<endl;
}
return 0;
}
Problem: 1068 |
|
User: uestcshe |
Memory: 208K |
|
Time: 0MS |
Language: C++ |
|
Result: Accepted |