在给定的一个棋盘中按照要求放置n个rook,每个rook给定一个矩形范围,也就是说这个rook只能放在这个矩形范围之内。
同时任何两个rook不同行和列。
显然行的选择不影响列的选择,反之亦然。
所以我们可以分开处理。
比如只看列:每个rook就有个一维范围,然后我们根据第二键值排序,然后吧前面的尽量排在前面。
这样的谈心显然是最优的。某个rook不能放置的话就标记下。
/***************************************** Author :Crazy_AC(JamesQi) Time :2016 File Name : *****************************************/ // #pragma comment(linker, "/STACK:1024000000,1024000000") #include <iostream> #include <algorithm> #include <iomanip> #include <sstream> #include <string> #include <stack> #include <queue> #include <deque> #include <vector> #include <map> #include <set> #include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #include <climits> using namespace std; #define MEM(x,y) memset(x, y,sizeof x) #define pk push_back #define lson rt << 1 #define rson rt << 1 | 1 #define bug cout << "BUG HERE\n" typedef long long LL; typedef unsigned long long ULL; typedef pair<int,int> ii; typedef pair<ii,int> iii; const double eps = 1e-10; const int inf = 1 << 30; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; int nCase = 0; /**********************Point*****************************/ struct Point{ double x,y; Point(double x=0,double y=0):x(x),y(y){} }; typedef Point Vector; Vector operator + (Vector A,Vector B){ return Vector(A.x + B.x,A.y + B.y); } Vector operator - (Vector A,Vector B){//向量减法 return Vector(A.x - B.x,A.y - B.y); } Vector operator * (Vector A,double p){//向量数乘 return Vector(A.x * p,A.y * p); } Vector operator / (Vector A,double p){//向量除实数 return Vector(A.x / p,A.y / p); } int dcmp(double x){//精度正负、0的判断 if (fabs(x) < eps) return 0; return x < 0?-1:1; } bool operator < (const Point& A,const Point& B){//小于符号的重载 return A.x < B.x || (A.x == B.x && A.y < B.y); } bool operator == (const Point& A,const Point& B){//点重的判断 return dcmp(A.x - B.x) == 0&& dcmp(A.y - B.y) == 0; } double Dot(Vector A,Vector B){//向量的点乘 return A.x * B.x + A.y * B.y; } double Length(Vector A){//向量的模 return sqrt(Dot(A,A)); } double Angle(Vector A,Vector B){//向量的夹角 return acos(Dot(A,B) / Length(A) / Length(B)); } double Cross(Vector A,Vector B){//向量的叉积 return A.x * B.y - A.y * B.x; } double Area2(Point A,Point B,Point C){//三角形面积 return Cross(B - A,C - A); } Vector Rotate(Vector A,double rad){//向量的旋转 return Vector(A.x * cos(rad) - A.y * sin(rad),A.x * sin(rad) + A.y * cos(rad)); } Vector Normal(Vector A){//法向量 int L = Length(A); return Vector(-A.y / L,A.x / L); } double DistanceToLine(Point p,Point A,Point B){//p到直线AB的距离 Vector v1 = B - A,v2 = p - A; return fabs(Cross(v1,v2)) / Length(v1); } double DistanceToSegment(Point p,Point A,Point B){//p到线段AB的距离 if (A == B) return Length(p - A); Vector v1 = B - A, v2 = p - A,v3 = p - B; if (dcmp(Dot(v1,v2) < 0)) return Length(v2); else if (dcmp(Dot(v1,v3)) > 0) return Length(v3); else return DistanceToLine(p,A,B); } bool SegmentProperIntersection(Point A1,Point A2,Point B1,Point B2){//线段相交 double c1 = Cross(A2 - A1,B1 - A1),c2 = Cross(A2 - A1,B2 - A1); double c3 = Cross(B2 - B1,A1 - B1),c4 = Cross(B2 - B1,A2 - B1); return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0; } const int N = 5555; struct Item { int l, r, num; }x[N],y[N]; int A[N],B[N]; int HASH[N]; bool cmp(Item& A,Item& B) { if (A.r != B.r) return A.r < B.r; return A.l < B.l; } int main() { // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); int n; while(~scanf("%d",&n) && n) { for(int i = 0;i < n;++i) { scanf("%d%d%d%d",&x[i].l,&y[i].l,&x[i].r,&y[i].r); x[i].num = i; y[i].num = i; } sort(x,x+n,cmp); sort(y,y+n,cmp); memset(HASH, 0,sizeof HASH); bool No = true; for (int i = 0;i < n;++i) { bool flag = false; for (int j = x[i].l;j <= x[i].r;++j) { if (!HASH[j]) { A[x[i].num] = j; HASH[j] = 1; flag = true; break; } } if (!flag) { No = false; break; } } if (!No) { puts("IMPOSSIBLE"); continue; } memset(HASH, 0,sizeof HASH); for (int i = 0;i < n;++i) { bool flag = false; for (int j = y[i].l;j <= y[i].r;++j) { if (!HASH[j]) { HASH[j] = 1; B[y[i].num] = j; flag = true; break; } } if (!flag) { No = false; break; } } if (!No) { puts("IMPOSSIBLE"); continue; } for (int i = 0;i < n;++i) printf("%d %d\n", A[i],B[i]); } return 0; }