插入排序、合并排序、堆排序和快速排序

   插入排序、合并排序、堆排序和快速排序
 http://www.cnblogs.com/yshb/archive/2012/07/23/2605026.html
package ch02;

import java.util.Random;

public class Test {

	/**
	 * 插入排序 时间复杂度O(n2)
	 * 
	 * @param array原地排序算法
	 */
	public void insertSort(int[] array) {
		for (int i = 1; i < array.length; i++) {
			int present = array[i];
			int position = i;
			while (position > 0 && array[position - 1] > present) {// 右移
				array[position] = array[position - 1];
				position--;
			}
			array[position] = present;
		}
	}

	/**
	 * 合并排序 O(nlogn)
	 * 
	 * @param array
	 * @param left
	 *            第一个索引
	 * @param right
	 *            最后一个索引
	 */
	public void mergeSort(int[] array, int left, int right) {
		if (left < right) {
			int middle = (left + right) / 2;
			mergeSort(array, left, middle);
			mergeSort(array, middle + 1, right);
			merge(array, left, middle, right);
		}
	}

	public void merge(int[] array, int left, int middle, int right) {
		int[] array1 = new int[middle - left + 1];
		int[] array2 = new int[right - middle];
		for (int i = 0; i < array1.length; i++) {
			array1[i] = array[left + i];
		}
		for (int i = 0; i < array2.length; i++) {
			array2[i] = array[middle + i + 1];
		}
		int l = 0, r = 0, k = left;
		for (; k <= right && l < array1.length && r < array2.length; k++) {
			if (array1[l] > array2[r]) {
				array[k] = array2[r];
				r++;
			} else {
				array[k] = array1[l];
				l++;
			}
		}
		while (l < array1.length) {
			array[k] = array1[l];
			l++;
			k++;
		}
		while (r < array2.length) {
			array[k] = array2[r];
			r++;
			k++;
		}
	}

	/**
	 * 堆排序 原地排序且O(nlogn)
	 * 
	 * @param array
	 */
	public void heapSort(int[] array) {
		buildHeap(array);
		for (int i = array.length - 1; i > 0; i--) {
			int k = array[0];
			array[0] = array[i];
			array[i] = k;
			heapify(array, 0, i);
		}
	}

	/**
	 * 构建最大堆
	 * 
	 * @param array
	 */
	public void buildHeap(int[] array) {
		for (int i = array.length / 2 - 1; i > -1; i--) {
			heapify(array, i, array.length);
		}
	}

	/**
	 * 
	 * @param array
	 *            数组
	 * @param index
	 *            数组中的索引
	 * @param length
	 *            树中元素个数
	 */
	public void heapify(int[] array, int index, int length) {
		int present = index;// 当前索引
		int value = array[index];
		int largest = array[index];
		int largest_index = index;
		while ((2 * present + 1) < length) {// 判断是否有儿子
			if (array[2 * present + 1] > largest) {
				largest = array[2 * present + 1];
				largest_index = 2 * present + 1;
			}
			if ((2 * present + 2) < length && array[2 * present + 2] > largest) {
				largest = array[2 * present + 2];
				largest_index = 2 * present + 2;
			}
			if (largest_index != present) {
				array[present] = largest;
				present = largest_index;
				largest = value;
			} else {
				break;
			}
		}
		array[present] = value;
	}

	/**
	 * 最坏时间O(n2)----在数组已经排好序时发生 O(nlogn)
	 * 
	 * @param array
	 * @param p
	 * @param r
	 */
	public void quickSort(int[] array, int p, int r) {
		if (p < r) {
			int q = partition(array, p, r);
			quickSort(array, p, q - 1);
			quickSort(array, q + 1, r);
		}
	}

	public int partition(int[] array, int p, int r) {
		Random random = new Random();
		exchange(array, r, random.nextInt(r - p + 1) + p);// 随机取数
		int x = array[r];
		int i = p - 1;
		for (int j = p; j < r; j++) {
			if (array[j] <= x) {
				i = i + 1;
				exchange(array, i, j);
			}
		}
		exchange(array, i + 1, r);
		return i + 1;
	}

	public void exchange(int[] array, int p, int q) {
		int k = array[p];
		array[p] = array[q];
		array[q] = k;
	}

}

package ch02;

import java.util.Random;

/**
 * 最大子序列和问题的几种算法
 * @author Administrator
 *
 */
public class MaxSequenceSumTest {

	/**
	 * @param args
	 */
	public static void main(String[] args) {
		int[] array = new int[10000000];
		Random r = new Random(100);
		for (int i = 0; i < array.length; i++) {
			int k = r.nextInt(20);
			if (k % 2 == 0)
				array[i] = 0 - k;
			else
				array[i] = k;
			// System.out.print(array[i]+" ");
		}
		// System.out.println();
		// maxSum1(array);
		// maxSum2(array);
		// maxSum3(array);
		long start = System.currentTimeMillis();
		int sum = maxSum4(array, 0, array.length - 1);
		long end = System.currentTimeMillis();
		System.out.print("最大子序列的和为:" + sum + "--------花费时间:");
		System.out.println((end - start) / 1000 + "秒" + (end - start) % 1000
				+ "毫秒");

		maxSum5(array);
	}

	/**
	 * f(n)=f(n-1)+f(n-2) f(n)=1 n<=1
	 */
	public static void f(int n) {
		long[] array = new long[n + 1];
		array[0] = 1;
		array[1] = 1;
		array[2] = 2;
		for (int i = 3; i < n + 1; i++) {
			array[i] = array[i - 1] + array[i - 2];
		}
		for (int i = 0; i < n + 1; i++) {
			System.out.println("i=" + i + "---------- " + array[i]);
		}
	}

	public static int maxSum1(int[] array) {
		long start = System.currentTimeMillis();
		int sum = 0;
		for (int i = 0; i < array.length; i++) {
			for (int j = i + 1; j < array.length; j++) {
				int s = array[i];
				for (int k = i + 1; k <= j; k++) {
					s = s + array[k];
				}
				if (s > sum)
					sum = s;
			}
		}
		long end = System.currentTimeMillis();
		System.out.print("最大子序列的和为:" + sum + "--------花费时间:");
		System.out.println((end - start) / 1000 + "秒" + (end - start) % 1000
				+ "毫秒");
		return sum;
	}

	/**
	 * 时间减半而已
	 * 
	 * @param array
	 * @return
	 */
	public static int maxSum2(int[] array) {
		int sum = 0;
		long start = System.currentTimeMillis();
		for (int i = 0; i < array.length; i++) {
			for (int j = i + 1; j < array.length; j++) {
				if (array[i] < 0)
					break;
				int s = array[i];
				for (int k = i + 1; k <= j; k++) {
					s = s + array[k];
				}
				if (s > sum)
					sum = s;
			}
		}
		long end = System.currentTimeMillis();
		System.out.print("最大子序列的和为:" + sum + "--------花费时间:");
		System.out.println((end - start) / 1000 + "秒" + (end - start) % 1000
				+ "毫秒");
		return sum;
	}

	/**
	 * 少一重循环
	 * 
	 * @param array
	 * @return
	 */
	public static int maxSum3(int[] array) {
		long start = System.currentTimeMillis();
		int sum = 0;
		for (int i = 0; i < array.length; i++) {
			int s = array[i];
			for (int j = i + 1; j < array.length; j++) {
				s = s + array[j];
				if (s > sum)
					sum = s;
			}
		}
		long end = System.currentTimeMillis();
		System.out.print("最大子序列的和为:" + sum + "--------花费时间:");
		System.out.println((end - start) / 1000 + "秒" + (end - start) % 1000
				+ "毫秒");
		return sum;
	}

	/**
	 * O(NlogN)时间复杂度 分治策略: 分:把问题分成两个大致相等的子问题,然后递归地对他们求解
	 * 治:将两个子问题的解修补到一起并可能再做些少量的附加工作,最后得到整个问题的解
	 * 
	 * @param array
	 * @param left
	 * @param right
	 * @return
	 */
	public static int maxSum4(int[] array, int left, int right) {
		if (left == right)
			if (array[left] > 0)
				return array[left];
			else
				return 0;
		int middle = (left + right) / 2;
		int lMax = maxSum4(array, left, middle);
		int rMax = maxSum4(array, middle + 1, right);
		int a = 0;
		int aMax = 0;
		for (int i = middle; i >= left; i--) {
			a = a + array[i];
			if (a > aMax)
				aMax = a;
		}
		int b = 0;
		int bMax = 0;
		for (int i = middle + 1; i < right; i++) {
			b = b + array[i];
			if (b > bMax)
				bMax = b;
		}
		return Math.max(Math.max(lMax, rMax), aMax + bMax);
	}

	/**
	 * 如果a[i]小于零,那么它不可能代表最优序列的起点,因为任何包含a[i]的作为起点的子序列都可以通过
	 * 用a[i+1]作为起点而得到改进。同理,任何小于零的子序列不可能是最优子序列的前缀。
	 * 
	 * @param array
	 * @return
	 */
	public static int maxSum5(int[] array) {
		long start = System.currentTimeMillis();
		int maxSum = 0, thisSum = 0;
		for (int i = 0; i < array.length; i++) {
			thisSum = thisSum + array[i];
			if (thisSum > maxSum) {
				maxSum = thisSum;
			} else if (thisSum < 0) {
				thisSum = 0;
			}
		}
		long end = System.currentTimeMillis();
		System.out.print("最大子序列的和为:" + maxSum + "--------花费时间:");
		System.out.println((end - start) / 1000 + "秒" + (end - start) % 1000
				+ "毫秒");
		return maxSum;
	}

}


你可能感兴趣的:(算法)