Self Numbers
Time Limit: 1000MS |
|
Memory Limit: 10000K |
Total Submissions: 21832 |
|
Accepted: 12291 |
Description
In 1949 the Indian mathematician D.R. Kaprekar discovered a class of numbers called self-numbers. For any positive integer n, define d(n) to be n plus the sum of the digits of n. (The d stands for digitadition, a term coined by Kaprekar.) For example, d(75) = 75 + 7 + 5 = 87. Given any positive integer n as a starting point, you can construct the infinite increasing sequence of integers n, d(n), d(d(n)), d(d(d(n))), .... For example, if you start with 33, the next number is 33 + 3 + 3 = 39, the next is 39 + 3 + 9 = 51, the next is 51 + 5 + 1 = 57, and so you generate the sequence
33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, ...
The number n is called a generator of d(n). In the sequence above, 33 is a generator of 39, 39 is a generator of 51, 51 is a generator of 57, and so on. Some numbers have more than one generator: for example, 101 has two generators, 91 and 100. A number with no generators is a self-number. There are thirteen self-numbers less than 100: 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, and 97.
Input
No input for this problem.
Output
Write a program to output all positive self-numbers less than 10000 in increasing order, one per line.
Sample Input
Sample Output
1
3
5
7
9
20
31
42
53
64
|
| <-- a lot more numbers
|
9903
9914
9925
9927
9938
9949
9960
9971
9982
9993
要求无前驱的数,用类似于筛法求素数,我们只需要把每个数的后继删掉,那么剩下的肯定是无前驱的。(可以有反证法简单证明一下:如果剩下的数有前驱,那么这个数就是其前驱的后继,那么一定会被删掉,所以不会剩下,故矛盾,即剩下的数无前驱,也就是我们要求的)
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std;
#define eps 1e-9
#define max(a,b) (a)>(b)?(a):(b)
int vis[11010];
int main()
{
int i,j,k,n,res,t;
memset(vis,0,sizeof(vis));
vis[0]=vis[1]=0;
for(i=1;i<=10000;i++)
{
n=t=i;
while(n)
{
t+=(n%10);
n/=10;
}
vis[t]=1;
}
for(i=1;i<=10000;i++)
if(!vis[i])
printf("%d\n",i);
return 0;
}