Sprague-Grundy

学习博弈论呢,不得不接触到SG函数,在很久很久以前我曾经坑过SG函数,别人都过了,可是自己不懂==,就跪了。

今天我们来深入的来学习下SG函数

http://hihocoder.com/contest/hiho46/problem/1

HIHOCODER的讲解还是非常详细的。

对于ICG(公平组合游戏选`)游戏,我们可以将游戏中每一个可能发生的局面表示为一个点。并且若存在局面i和局面j,且j是i的后继局面(即局面i可以转化为局面j),我们用一条有向边,从i出发到j,连接表示局面i和局面j的点。则整个游戏可以表示成为一个有向无环图:
Sprague-Grundy_第1张图片
根据ICG游戏的定义我们知道,任意一个无法继续进行下去的局面为终结局面,即P局面(先手必败)。在上图中我们可以标记所有出度为0的点为P点。接着根据ICG游戏的两条性质,我们可以逆推出所有点为P局面还是N局面:
Sprague-Grundy_第2张图片
因此,对于任意一个ICG游戏,我们可以采取逆推的方法,标记出所有局面是N局面还是P局面。
但仅仅只是标记N、P,所能得到的信息太少,于是我们定义了Sg(Sprague-Grundy)函数:

对于一个游戏可能发生的局面x,我们如下定义它的sg值:
(1)若当前局面x为终结局面,则sg值为0。
(2)若当前局面x非终结局面,其sg值为:sg(x) = mex{sg(y) | y是x的后继局面}。
mex{a[i]}表示a中未出现的最小非负整数。举个例子来说:
mex{0, 1, 2} = 3, mex{1, 2}=0, mex{0,1,3}=2

我们将上图用sg函数表示后,得到:
Sprague-Grundy_第3张图片
可以发现,若一个局面x为P局面,则有sg(x)=0;否则sg(x)>0。同样sg值也满足N、P之间的转换关系:
若一个局面x,其sg(x)>0,则一定存在一个后续局面y,sg(y)=0。
若一个局面x,其sg(x)=0,则x的所有后续局面y,sg(y)>0。

由上面的推论,我们可以知道用N、P-Position可以描述的游戏用sg同样可以描述。并且在sg函数中还有一个非常好用的定理,叫做sg定理:
对于多个单一游戏,X=x[1..n],每一次我们只能改变其中一个单一游戏的局面。则其总局面的sg值等于这些单一游戏的sg值异或和。
即:
sg(X) = sg(x[1]) xor sg(x[2]) xor … xor sg(x[n])
要证明这一点我们只要证明:
(1) 假设sg(x[1]) xor sg(x[2]) xor … xor sg(x[n]) = A,对于任意一个0 <= B < A,总存在一个X的后续局面Y,使得sg(Y) = B。
(2) 假设sg(x[1]) xor sg(x[2]) xor … xor sg(x[n]) = A,不存在一个X的后续局面Y,使得sg(Y) = A。
下先证明(1):
假设M = A xor
B,设M表示为二进制之后最高位的1为第k位。所以A的第k位为1,B的第k位为0。又因为A的第k位为1,至少存在一个i,sg(x[i])的第k位也为1。那么一定有sg(x[i]) xor M < sg(x[i]),即一定通过某个操作使x[i]变为x[i’],且sg(x[i’]) = sg(x[i]) xor M。那么:
sg(x[i’]) xor Other = sg(x[i]) xor M xor Other = M xor A = B
下证明(2):
若sg(X) = A,sg(Y) = A。不妨设我们改变的游戏为x[i],则X=x[1..n], Y=x[1…i’…n]。有sg(x[i]) = sg(x[i’]),产生矛盾,所以sg(Y)不可能等于A。

现在让我们回到我们的题目上:
局面上一共有N堆石子,每一次我们只能改变一堆石子。那么我们可以将每一堆石子看作一个单一游戏。
对于一堆石子,若该堆石子数量为0,就达到了终止状态,所以sg(0) = 0。
若其石子数量为k,接下来我们从k=1开始枚举递推每一个sg(k)。对于k,其可能的后继状态有:
(1)不分堆:石子数量为k’=0..k-1,则sg(k’)
(2)分堆:石子变为2堆,数量为(1,k-1),(2,k-2),…,(k-1,1)。设第一堆的石子数量为i,则sg值为sg(i) xor sg(k-i)。(这里用到了sg定理)
那么可以推算出sg(k) = mex{sg(0), sg(i), sg(i) xor sg(k - i) | i = 1..k-1}。

k     0 1 2 3 4 5 6 7 8 9 10 11 12 …
sg(k) 0 1 2 4 3 5 6 8 7 9 10 12 11 …
对于N堆石子,其sg值则为这N堆各自的sg值异或和。

呜呜~看完了,我还没有会唉。。先留着尾巴

你可能感兴趣的:(Sprague-Grundy)