/** Spark SQL源码分析系列文章*/
前几篇文章介绍了Spark SQL的Catalyst的核心运行流程、SqlParser,和Analyzer,本来打算直接写Optimizer的,但是发现忘记介绍TreeNode这个Catalyst的核心概念,介绍这个可以更好的理解Optimizer是如何对Analyzed Logical Plan进行优化的生成Optimized Logical Plan,本文就将TreeNode基本架构进行解释。
一、TreeNode类型
TreeNode Library是Catalyst的核心类库,语法树的构建都是由一个个TreeNode组成。TreeNode本身是一个BaseType <: TreeNode[BaseType] 的类型,并且实现了Product这个trait,这样可以存放异构的元素了。
TreeNode有三种形态:
BinaryNode
、
UnaryNode
、
Leaf Node
.
在Catalyst里,这些Node都是继承自Logical Plan,可以说每一个TreeNode节点就是一个Logical Plan(包含Expression)(直接继承自TreeNode)
主要继承关系类图如下:
1、BinaryNode
二元节点,即有左右孩子的二叉节点
- [[TreeNode]] that has two children, [[left]] and [[right]].
- trait BinaryNode[BaseType <: TreeNode[BaseType]] {
- def left: BaseType
- def right: BaseType
- def children = Seq(left, right)
- }
- abstract class BinaryNode extends LogicalPlan with trees.BinaryNode[LogicalPlan] {
- self: Product =>
- }
节点定义比较简单,左孩子,右孩子都是BaseType。 children是一个Seq(left, right)
下面列出主要继承二元节点的类,可以当查询手册用 :)
这里提示下平常常用的二元节点:Join和Union
2、UnaryNode
一元节点,即只有一个孩子节点
- A [[TreeNode]] with a single [[child]].
- trait UnaryNode[BaseType <: TreeNode[BaseType]] {
- def child: BaseType
- def children = child :: Nil
- }
- abstract class UnaryNode extends LogicalPlan with trees.UnaryNode[LogicalPlan] {
- self: Product =>
- }
下面列出主要继承一元节点的类,可以当查询手册用 :)
常用的二元节点有,Project,Subquery,Filter,Limit ...等
3、Leaf Node
叶子节点,没有孩子节点的节点。
- A [[TreeNode]] with no children.
- trait LeafNode[BaseType <: TreeNode[BaseType]] {
- def children = Nil
- }
- abstract class LeafNode extends LogicalPlan with trees.LeafNode[LogicalPlan] {
- self: Product =>
-
- override def references = Set.empty
- }
下面列出主要继承叶子节点的类,可以当查询手册用 :)
提示常用的叶子节点: Command类系列,一些Funtion函数,以及Unresolved Relation...etc.
二、TreeNode 核心方法
简单介绍一个TreeNode这个类的属性和方法
currentId
一颗树里的TreeNode有个唯一的id,类型是Java.util.concurrent.atomic.AtomicLong原子类型。
- private val currentId = new java.util.concurrent.atomic.AtomicLong
- protected def nextId() = currentId.getAndIncrement()
sameInstance
判断2个实例是否是同一个的时候,只需要判断TreeNode的id。
- def sameInstance(other: TreeNode[_]): Boolean = {
- this.id == other.id
- }
fastEquals
,更常用的一个快捷的判定方法,没有重写Object.Equals,这样防止scala编译器生成case class equals 方法
- def fastEquals(other: TreeNode[_]): Boolean = {
- sameInstance(other) || this == other
- }
map,flatMap,collect都是递归的对子节点进行应用PartialFunction,其它方法还有很多,篇幅有限这里不一一描述了。
2.1、核心方法 transform 方法
transform该方法接受一个PartialFunction,就是就是前一篇文章Analyzer里提到的Batch里面的Rule。
是会将Rule迭代应用到该节点的所有子节点,最后返回这个节点的副本(一个和当前节点不同的节点,后面会介绍,其实就是利用反射来返回一个修改后的节点)。
如果rule没有对一个节点进行PartialFunction的操作,就返回这个节点本身。
来看一个例子:
- object GlobalAggregates extends Rule[LogicalPlan] {
- def apply(plan: LogicalPlan): LogicalPlan = plan transform {
- case Project(projectList, child) if containsAggregates(projectList) =>
- Aggregate(Nil, projectList, child)
- }
- def containsAggregates(exprs: Seq[Expression]): Boolean = {
- exprs.foreach(_.foreach {
- case agg: AggregateExpression => return true
- case _ =>
- })
- false
- }
- }
这个方法真正的调用是transformChildrenDown,这里提到了用先序遍历来对子节点进行递归的Rule应用。
如果在对当前节点应用rule成功,修改后的节点afterRule,来对其children节点进行rule的应用。
transformDown方法:
-
-
-
-
-
- ef transformDown(rule: PartialFunction[BaseType, BaseType]): BaseType = {
- val afterRule = rule.applyOrElse(this, identity[BaseType])
-
- if (this fastEquals afterRule) {
- transformChildrenDown(rule)
- } else {
- afterRule.transformChildrenDown(rule)
- }
最重要的方法transformChildrenDown:
对children节点进行递归的调用PartialFunction,利用最终返回的newArgs来生成一个新的节点,这里调用了makeCopy()来生成节点。
transformChildrenDown方法:
-
-
-
-
-
- def transformChildrenDown(rule: PartialFunction[BaseType, BaseType]): this.type = {
- var changed = false
- val newArgs = productIterator.map {
- case arg: TreeNode[_] if children contains arg =>
- val newChild = arg.asInstanceOf[BaseType].transformDown(rule)
- if (!(newChild fastEquals arg)) {
- changed = true
- newChild
- } else {
- arg
- }
- case Some(arg: TreeNode[_]) if children contains arg =>
- val newChild = arg.asInstanceOf[BaseType].transformDown(rule)
- if (!(newChild fastEquals arg)) {
- changed = true
- Some(newChild)
- } else {
- Some(arg)
- }
- case m: Map[_,_] => m
- case args: Traversable[_] => args.map {
- case arg: TreeNode[_] if children contains arg =>
- val newChild = arg.asInstanceOf[BaseType].transformDown(rule)
- if (!(newChild fastEquals arg)) {
- changed = true
- newChild
- } else {
- arg
- }
- case other => other
- }
- case nonChild: AnyRef => nonChild
- case null => null
- }.toArray
- if (changed) makeCopy(newArgs) else this
- }
makeCopy方法,反射生成节点副本
-
-
-
-
-
-
- def makeCopy(newArgs: Array[AnyRef]): this.type = attachTree(this, "makeCopy") {
- try {
- val defaultCtor = getClass.getConstructors.head
- if (otherCopyArgs.isEmpty) {
- defaultCtor.newInstance(newArgs: _*).asInstanceOf[this.type]
- } else {
- defaultCtor.newInstance((newArgs ++ otherCopyArgs).toArray: _*).asInstanceOf[this.type]
- }
- } catch {
- case e: java.lang.IllegalArgumentException =>
- throw new TreeNodeException(
- this, s"Failed to copy node. Is otherCopyArgs specified correctly for $nodeName? "
- + s"Exception message: ${e.getMessage}.")
- }
- }
三、TreeNode实例
现在准备从一段sql来出发,画一下这个spark sql的整体树的transformation。
SELECT * FROM (SELECT * FROM src) a join (select * from src)b on a.key=b.key
首先,我们先执行一下,在控制台里看一下生成的计划:
- <span style="font-size:12px;">sbt/sbt hive/console
- Using /usr/java/default as default JAVA_HOME.
- Note, this will be overridden by -java-home if it is set.
- [info] Loading project definition from /app/hadoop/shengli/spark/project/project
- [info] Loading project definition from /app/hadoop/shengli/spark/project
- [info] Set current project to root (in build file:/app/hadoop/shengli/spark/)
- [info] Starting scala interpreter...
- [info]
- import org.apache.spark.sql.catalyst.analysis._
- import org.apache.spark.sql.catalyst.dsl._
- import org.apache.spark.sql.catalyst.errors._
- import org.apache.spark.sql.catalyst.expressions._
- import org.apache.spark.sql.catalyst.plans.logical._
- import org.apache.spark.sql.catalyst.rules._
- import org.apache.spark.sql.catalyst.types._
- import org.apache.spark.sql.catalyst.util._
- import org.apache.spark.sql.execution
- import org.apache.spark.sql.hive._
- import org.apache.spark.sql.hive.test.TestHive._
- import org.apache.spark.sql.parquet.ParquetTestData
-
- scala> val query = sql("SELECT * FROM (SELECT * FROM src) a join (select * from src)b on a.key=b.key")</span>
3.1、UnResolve Logical Plan
第一步生成UnResolve Logical Plan 如下:
- scala> query.queryExecution.logical
- res0: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan =
- Project [*]
- Join Inner, Some(('a.key = 'b.key))
- Subquery a
- Project [*]
- UnresolvedRelation None, src, None
- Subquery b
- Project [*]
- UnresolvedRelation None, src, None
如果画成树是这样的,仅个人理解:
我将一开始介绍的三种Node分别用绿色UnaryNode,红色Binary Node 和 蓝色 LeafNode 来表示。
3.2、Analyzed Logical Plan
Analyzer会将允用Batch的Rules来对Unresolved Logical Plan Tree 进行rule应用,这里用来EliminateAnalysisOperators将Subquery给消除掉,Batch("Resolution将Atrribute和Relation给Resolve了,Analyzed Logical Plan Tree如下图:
3.3、Optimized Plan
我把Catalyst里的Optimizer戏称为Spark SQL的优化大师,因为整个Spark SQL的优化都是在这里进行的,后面会有文章来讲解Optimizer。
在这里,优化的不明显,因为SQL本身不复杂
- scala> query.queryExecution.optimizedPlan
- res3: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan =
- Project [key#0,value#1,key#2,value#3]
- Join Inner, Some((key#0 = key#2))
- MetastoreRelation default, src, None
- MetastoreRelation default, src, None
生成的树如下图:
3.4、executedPlan
最后一步是最终生成的物理执行计划,里面涉及到了Hive的TableScan,涉及到了HashJoin操作,还涉及到了Exchange,Exchange涉及到了Shuffle和Partition操作。
- scala> query.queryExecution.executedPlan
- res4: org.apache.spark.sql.execution.SparkPlan =
- Project [key#0:0,value#1:1,key#2:2,value#3:3]
- HashJoin [key#0], [key#2], BuildRight
- Exchange (HashPartitioning [key#0:0], 150)
- HiveTableScan [key#0,value#1], (MetastoreRelation default, src, None), None
- Exchange (HashPartitioning [key#2:0], 150)
- HiveTableScan [key#2,value#3], (MetastoreRelation default, src, None), None
生成的物理执行树如图:
四、总结:
本文介绍了Spark SQL的Catalyst框架核心TreeNode类库,绘制了TreeNode继承关系的类图,了解了TreeNode这个类在Catalyst所起到的作用。语法树中的Logical Plan均派生自TreeNode,并且Logical Plan派生出TreeNode的三种形态,即Binary Node, Unary Node, Leaft Node。 正式这几种节点,组成了Spark SQl的Catalyst的语法树。
TreeNode的transform方法是核心的方法,它接受一个rule,会对当前节点的孩子节点进行递归的调用rule,最后会返回一个TreeNode的copy,这种操作就是transformation,贯穿了Spark SQL执行的几个核心阶段,如Analyze,Optimize阶段。
最后用一个实际的例子,展示出来Spark SQL的执行树生成流程。
我目前的理解就是这些,如果分析不到位的地方,请大家多多指正。
——EOF——
原创文章,转载请注明:
转载自:OopsOutOfMemory盛利的Blog,作者: OopsOutOfMemory
本文链接地址:http://blog.csdn.net/oopsoom/article/details/38084079
注:本文基于署名-非商业性使用-禁止演绎 2.5 中国大陆(CC BY-NC-ND 2.5 CN)协议,欢迎转载、转发和评论,但是请保留本文作者署名和文章链接。如若需要用于商业目的或者与授权方面的协商,请联系我。