An easy problemTime Limit: 8000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 647 Accepted Submission(s): 380
Problem Description
One day, a useless calculator was being built by Kuros. Let's assume that number X is showed on the screen of calculator. At first, X = 1. This calculator only supports two types of operation.
1. multiply X with a number. 2. divide X with a number which was multiplied before. After each operation, please output the number X modulo M.
Input
The first line is an integer T(
1≤T≤10 ), indicating the number of test cases.
For each test case, the first line are two integers Q and M. Q is the number of operations and M is described above. ( 1≤Q≤105,1≤M≤109 ) The next Q lines, each line starts with an integer x indicating the type of operation. if x is 1, an integer y is given, indicating the number to multiply. ( 0<y≤109 ) if x is 2, an integer n is given. The calculator will divide the number which is multiplied in the nth operation. (the nth operation must be a type 1 operation.) It's guaranteed that in type 2 operation, there won't be two same n.
Output
For each test case, the first line, please output "Case #x:" and x is the id of the test cases starting from 1.
Then Q lines follow, each line please output an answer showed by the calculator.
Sample Input
Sample Output
|
比赛时逆元卡死了,最后康总线段树KO了。
题意:有Q次操作,操作分两种。
1 y —— 表示当前结果乘以y。
2 n —— 表示当前结果除去第n步乘上的y。
不能直接逆元,中间会出问题。。。
思路:可以用线段树维护区间的乘积来表示每次操作的结果,初始化所有区间值为1。碰到操作1更新当前位置的值为y,碰到操作2,把第n个位置的值变为1。
AC代码:
#include <cstdio> #include <cstring> #include <algorithm> #define MAXN 100000+10 #define lson o<<1, l, mid #define rson o<<1|1, mid+1, r #define ll o<<1 #define rr o<<1|1 #define LL long long using namespace std; struct Tree { int l, r; LL sum; }; Tree tree[MAXN<<2]; int a[MAXN]; int Q, M; void PushUp(int o){ tree[o].sum = tree[ll].sum % M * tree[rr].sum % M; } void build(int o, int l, int r) { tree[o].l = l; tree[o].r = r; tree[o].sum = 1; if(l == r) return ; int mid = (l + r) >> 1; build(lson); build(rson); } void update(int o, int pos, int val) { if(tree[o].l == tree[o].r) { tree[o].sum = val%M; return ; } int mid = (tree[o].l + tree[o].r) >> 1; if(pos <= mid) update(ll, pos, val); else update(rr, pos, val); PushUp(o); } LL query(int o, int L, int R) { if(L <= tree[o].l && R >= tree[o].r) return tree[o].sum % M; int mid = (tree[o].l + tree[o].r) >> 1; if(R <= mid) return query(ll, L, R); else if(L > mid) return query(rr, L, R); else return query(ll, L, mid) * query(rr, mid+1, R) % M; } int main() { int t, k = 1; scanf("%d", &t); while(t--) { scanf("%d%d", &Q, &M); build(1, 1, Q); printf("Case #%d:\n", k++); for(int i = 1; i <= Q; i++) { int op; scanf("%d%d", &op, &a[i]); if(op == 1) update(1, i, a[i]); else if(op == 2) update(1, a[i], 1); printf("%lld\n", query(1, 1, i) % M); } } return 0; }