NOJ1538——[1538] K-Submartix

  • 问题描述
  • You are given a matrix consisting of some integer, its size is n*m.
    You should find a minimum area submatrix that the sum of the submatrix (sum of all elements in the submatrix) is not less k.
  • 输入
  • The input contains multiple test cases. Each test case begins with n, m (1 <= n, m <= 250) and k (-10^9 <= k <= 10^9) on line. Next n lines contain m integer each matrix . The input ends once EOF is met.
  • 输出
  • Print a single integer -- the area of the minimum obtained submatrix. If we cannot obtain a matrix of sum is not less k, print -1.
  • 样例输入
  • 4 4 10
    1 2 3 4
    5 6 7 8
    9 10 11 12
    13 14 15 16
    1 3 15
    10 -5 10
    2 2 10
    1 2
    2 3
  • 样例输出
  • 1
    3
    -1
  • 提示
  • 来源
  • wk@NJUPT

   这题就是让你求一个满足矩阵元素和大于等于k,然后面积最小的矩阵,输出最小面积,如果不存在,就输出-1,

我的思路是,想办法把二维的问题化成一维。所以我需要一个数组sum[i][j],表示第j列从第1行到第i行的元素和。

之后我们枚举矩阵的上下界,利用前缀和的思想,另开一维数组array[],存的就是前i列的和,接下来就是去判断,然后求最小值了。

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>

using namespace std;

const int maxn=270;

int sum[maxn][maxn];
int array[maxn];
int mat[maxn][maxn];
int main()
{
int n,m,k;
while(~scanf("%d%d%d",&n,&m,&k))
{
memset(sum,0,sizeof(sum));
array[0]=0;
int area=0x3f3f3f3f;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
scanf("%d",&mat[i][j]);
sum[i][j]=sum[i-1][j]+mat[i][j];
}
for(int up=1;up<=n;up++)
for(int down=up;down<=n;down++)
{
for(int i=1;i<=m;i++)
{
array[i]=array[i-1]+sum[down][i]-sum[up-1][i];
if(array[i]<k)//也算是个剪枝了,之前没写直接TLE
continue;
for(int j=i-1;j>=0;j--)
if(array[i]-array[j]>=k)
{
area=min(area,(i-j)*(down-up+1));
break;
}
}
}
if(area==0x3f3f3f3f)
printf("-1\n");
else
printf("%d\n",area );
}
return 0;
}

你可能感兴趣的:(NOJ1538——[1538] K-Submartix)