/* * pipe.c -- fifo driver for scull * * Copyright (C) 2001 Alessandro Rubini and Jonathan Corbet * Copyright (C) 2001 O'Reilly & Associates * * The source code in this file can be freely used, adapted, * and redistributed in source or binary form, so long as an * acknowledgment appears in derived source files. The citation * should list that the code comes from the book "Linux Device * Drivers" by Alessandro Rubini and Jonathan Corbet, published * by O'Reilly & Associates. No warranty is attached; * we cannot take responsibility for errors or fitness for use. * */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/kernel.h> /* printk(), min() */ #include <linux/slab.h> /* kmalloc() */ #include <linux/fs.h> /* everything... */ #include <linux/proc_fs.h> #include <linux/errno.h> /* error codes */ #include <linux/types.h> /* size_t */ #include <linux/fcntl.h> #include <linux/poll.h> #include <linux/cdev.h> #include <asm/uaccess.h> #include "scull.h" /* local definitions */ struct scull_pipe { wait_queue_head_t inq, outq; /* read and write queues *///inq是读设备的进程的等待队列,outq是写设备的进程的等待队列 char *buffer, *end; /* begin of buf, end of buf */ int buffersize; /* used in pointer arithmetic */缓冲区大小 char *rp, *wp; /* where to read, where to write *///读指针和写指针 int nreaders, nwriters; /* number of openings for r/w *///读写的进程数目 struct fasync_struct *async_queue; /* asynchronous readers *///用于通知读进程的异步结构体 struct semaphore sem; /* mutual exclusion semaphore */ struct cdev cdev; /* Char device structure */ }; /* parameters */ static int scull_p_nr_devs = SCULL_P_NR_DEVS; /* number of pipe devices */ int scull_p_buffer = SCULL_P_BUFFER; /* buffer size */ dev_t scull_p_devno; /* Our first device number */ module_param(scull_p_nr_devs, int, 0); /* FIXME check perms */ module_param(scull_p_buffer, int, 0); static struct scull_pipe *scull_p_devices; static int scull_p_fasync(int fd, struct file *filp, int mode); static int spacefree(struct scull_pipe *dev); /* * Open and close */ static int scull_p_open(struct inode *inode, struct file *filp)//打开文件 { struct scull_pipe *dev; dev = container_of(inode->i_cdev, struct scull_pipe, cdev); filp->private_data = dev; if (down_interruptible(&dev->sem)) return -ERESTARTSYS; if (!dev->buffer) { /* allocate the buffer *///若缓冲区不存在,则分配缓冲区,由第一个打开文件的进程执行 dev->buffer = kmalloc(scull_p_buffer, GFP_KERNEL); if (!dev->buffer) { up(&dev->sem); return -ENOMEM; } } dev->buffersize = scull_p_buffer; dev->end = dev->buffer + dev->buffersize;//设置尾指针 dev->rp = dev->wp = dev->buffer; /* rd and wr from the beginning */ /* use f_mode,not f_flags: it's cleaner (fs/open.c tells why) */ if (filp->f_mode & FMODE_READ)//读进程个数 dev->nreaders++; if (filp->f_mode & FMODE_WRITE)//写进程个数 dev->nwriters++; up(&dev->sem); return nonseekable_open(inode, filp);//通知内核,设备不支持llseek操作,默认内核允许设备定位lseek } static int scull_p_release(struct inode *inode, struct file *filp) { struct scull_pipe *dev = filp->private_data; /* remove this filp from the asynchronously notified filp's */ scull_p_fasync(-1, filp, 0);//将此文件描述符(进程)从异步通知描述符集合中删除 down(&dev->sem); if (filp->f_mode & FMODE_READ) dev->nreaders--; if (filp->f_mode & FMODE_WRITE) dev->nwriters--; if (dev->nreaders + dev->nwriters == 0) { kfree(dev->buffer);//设备上没有读写进程了则释放设备文件 dev->buffer = NULL; /* the other fields are not checked on open */ } up(&dev->sem); return 0; } /* * Data management: read and write */ static ssize_t scull_p_read (struct file *filp, char __user *buf, size_t count, loff_t *f_pos) { struct scull_pipe *dev = filp->private_data; if (down_interruptible(&dev->sem)) return -ERESTARTSYS; while (dev->rp == dev->wp) { /* nothing to read */ up(&dev->sem); /* release the lock */ if (filp->f_flags & O_NONBLOCK)// return -EAGAIN; PDEBUG("\"%s\" reading: going to sleep\n", current->comm); if (wait_event_interruptible(dev->inq, (dev->rp != dev->wp)))//条件为真则继续执行,否则进入等待队列dev->inq。读写指针不等即说明缓冲区内有数据 return -ERESTARTSYS; /* signal: tell the fs layer to handle it */ /* otherwise loop, but first reacquire the lock *///运行到这里,说明条件为真,缓冲区内有数据,进程取得信号量后读缓冲区 if (down_interruptible(&dev->sem)) return -ERESTARTSYS; } /* ok, data is there, return something */ if (dev->wp > dev->rp) count = min(count, (size_t)(dev->wp - dev->rp)); else /* the write pointer has wrapped, return data up to dev->end */ count = min(count, (size_t)(dev->end - dev->rp));//若读指针在高地址,则读到缓冲区尾即止。 if (copy_to_user(buf, dev->rp, count)) { up (&dev->sem); return -EFAULT; } dev->rp += count; if (dev->rp == dev->end)//读指针回卷 dev->rp = dev->buffer; /* wrapped */ up (&dev->sem); /* finally, awake any writers and return */ wake_up_interruptible(&dev->outq);//唤醒写队列中的所有进程 PDEBUG("\"%s\" did read %li bytes\n",current->comm, (long)count); return count; } /* Wait for space for writing; caller must hold device semaphore. On * error the semaphore will be released before returning. */ static int scull_getwritespace(struct scull_pipe *dev, struct file *filp) { while (spacefree(dev) == 0) { /* full */ DEFINE_WAIT(wait); //定义一个等待队列入口wait up(&dev->sem); if (filp->f_flags & O_NONBLOCK) return -EAGAIN; PDEBUG("\"%s\" writing: going to sleep\n",current->comm); prepare_to_wait(&dev->outq, &wait, TASK_INTERRUPTIBLE);//准备休眠等待,可能会在下面的schedule()中才休眠 if (spacefree(dev) == 0)//再次查看确认空间是空的 schedule(); //调度进程,当进程被调度回来时接着向下运行 finish_wait(&dev->outq, &wait);//完成休眠等待,这时候可能缓冲区已经有写的空间了 if (signal_pending(current)) return -ERESTARTSYS; /* signal: tell the fs layer to handle it */ if (down_interruptible(&dev->sem))//获得锁之后如果缓冲区已经有写的空间则跳出while循环,函数返回。 return -ERESTARTSYS; } return 0; } /* How much space is free? */ static int spacefree(struct scull_pipe *dev)//返回(真正可用空间-1)的大小 { if (dev->rp == dev->wp) return dev->buffersize - 1; return ((dev->rp + dev->buffersize - dev->wp) % dev->buffersize) - 1; } static ssize_t scull_p_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos) { struct scull_pipe *dev = filp->private_data; int result; if (down_interruptible(&dev->sem)) //先得到设备的信号量,因为接下来要访问设备 return -ERESTARTSYS; /* Make sure there's space to write *///有空间写则返回0 result = scull_getwritespace(dev, filp);//如果函数返回则说明已经有写的空间了,并且获得了锁 if (result) return result; /* scull_getwritespace called up(&dev->sem) */ /* ok, space is there, accept something */ count = min(count, (size_t)spacefree(dev)); if (dev->wp >= dev->rp) count = min(count, (size_t)(dev->end - dev->wp)); /* to end-of-buf */ else /* the write pointer has wrapped, fill up to rp-1 */ count = min(count, (size_t)(dev->rp - dev->wp - 1)); PDEBUG("Going to accept %li bytes to %p from %p\n", (long)count, dev->wp, buf); if (copy_from_user(dev->wp, buf, count)) { up (&dev->sem); return -EFAULT; } dev->wp += count; if (dev->wp == dev->end) dev->wp = dev->buffer; /* wrapped */ up(&dev->sem); /* finally, awake any reader */ wake_up_interruptible(&dev->inq); /* blocked in read() and select() */ /* and signal asynchronous readers, explained late in chapter 5 */ if (dev->async_queue)//如果有异步的读进程 kill_fasync(&dev->async_queue, SIGIO, POLL_IN);//向异步队列发送SIGIO信号,POLL_IN标识设备可读 PDEBUG("\"%s\" did write %li bytes\n",current->comm, (long)count); return count; } static unsigned int scull_p_poll(struct file *filp, poll_table *wait)//设备提供轮询功能,用户态程序可以使用select来轮询设备 { struct scull_pipe *dev = filp->private_data; unsigned int mask = 0; /* * The buffer is circular; it is considered full * if "wp" is right behind "rp" and empty if the * two are equal. */ down(&dev->sem); poll_wait(filp, &dev->inq, wait);//把读等待队列添加到poll_table wait中 poll_wait(filp, &dev->outq, wait);//把写等待队列添加到poll_table wait中 if (dev->rp != dev->wp) mask |= POLLIN | POLLRDNORM; /* readable */ if (spacefree(dev)) mask |= POLLOUT | POLLWRNORM; /* writable */ up(&dev->sem); return mask; } static int scull_p_fasync(int fd, struct file *filp, int mode) { struct scull_pipe *dev = filp->private_data; return fasync_helper(fd, filp, mode, &dev->async_queue); } /* FIXME this should use seq_file */ #ifdef SCULL_DEBUG static void scullp_proc_offset(char *buf, char **start, off_t *offset, int *len) { if (*offset == 0) return; if (*offset >= *len) { /* Not there yet */ *offset -= *len; *len = 0; } else { /* We're into the interesting stuff now */ *start = buf + *offset; *offset = 0; } } static int scull_read_p_mem(char *buf, char **start, off_t offset, int count, int *eof, void *data) { int i, len; struct scull_pipe *p; #define LIMIT (PAGE_SIZE-200) /* don't print any more after this size */ *start = buf; len = sprintf(buf, "Default buffersize is %i\n", scull_p_buffer); for(i = 0; i<scull_p_nr_devs && len <= LIMIT; i++) { p = &scull_p_devices[i]; if (down_interruptible(&p->sem)) return -ERESTARTSYS; len += sprintf(buf+len, "\nDevice %i: %p\n", i, p); /* len += sprintf(buf+len, " Queues: %p %p\n", p->inq, p->outq);*/ len += sprintf(buf+len, " Buffer: %p to %p (%i bytes)\n", p->buffer, p->end, p->buffersize); len += sprintf(buf+len, " rp %p wp %p\n", p->rp, p->wp); len += sprintf(buf+len, " readers %i writers %i\n", p->nreaders, p->nwriters); up(&p->sem); scullp_proc_offset(buf, start, &offset, &len); } *eof = (len <= LIMIT); return len; } #endif /* * The file operations for the pipe device * (some are overlayed with bare scull) */ struct file_operations scull_pipe_fops = { .owner = THIS_MODULE, .llseek = no_llseek,//特殊的辅助函数,定义在<linux/fs.h> .read = scull_p_read, .write = scull_p_write, .poll = scull_p_poll, .ioctl = scull_ioctl, .open = scull_p_open, .release = scull_p_release, .fasync = scull_p_fasync, }; /* * Set up a cdev entry. */ static void scull_p_setup_cdev(struct scull_pipe *dev, int index) { int err, devno = scull_p_devno + index; cdev_init(&dev->cdev, &scull_pipe_fops); dev->cdev.owner = THIS_MODULE; err = cdev_add (&dev->cdev, devno, 1); /* Fail gracefully if need be */ if (err) printk(KERN_NOTICE "Error %d adding scullpipe%d", err, index); } /* * Initialize the pipe devs; return how many we did. */ int scull_p_init(dev_t firstdev)//以firstdev开始,为scullpipe设备分配scull_p_nr_devs个设备号,此函数在main.c中被调用。 { int i, result; //这里连续分配了scull_p_nr_devs个设备号 result = register_chrdev_region(firstdev, scull_p_nr_devs, "scullp"); if (result < 0) { printk(KERN_NOTICE "Unable to get scullp region, error %d\n", result); return 0; } scull_p_devno = firstdev; scull_p_devices = kmalloc(scull_p_nr_devs * sizeof(struct scull_pipe), GFP_KERNEL); if (scull_p_devices == NULL) { unregister_chrdev_region(firstdev, scull_p_nr_devs); return 0; } memset(scull_p_devices, 0, scull_p_nr_devs * sizeof(struct scull_pipe)); for (i = 0; i < scull_p_nr_devs; i++) {// init_waitqueue_head(&(scull_p_devices[i].inq)); init_waitqueue_head(&(scull_p_devices[i].outq)); init_MUTEX(&scull_p_devices[i].sem); scull_p_setup_cdev(scull_p_devices + i, i); } #ifdef SCULL_DEBUG create_proc_read_entry("scullpipe", 0, NULL, scull_read_p_mem, NULL); #endif return scull_p_nr_devs; } /* * This is called by cleanup_module or on failure. * It is required to never fail, even if nothing was initialized first */ void scull_p_cleanup(void) { int i; #ifdef SCULL_DEBUG remove_proc_entry("scullpipe", NULL); #endif if (!scull_p_devices) return; /* nothing else to release */ for (i = 0; i < scull_p_nr_devs; i++) { cdev_del(&scull_p_devices[i].cdev); kfree(scull_p_devices[i].buffer); } kfree(scull_p_devices); unregister_chrdev_region(scull_p_devno, scull_p_nr_devs); scull_p_devices = NULL; /* pedantic */ }
注意:open操作中假设分配了0x1~ox9共9个字节的buffer,那么open之后内存如图所示,注意此时dev->end所指的空间是无效内存。
这里主要理解了read和write函数,read和write函数也是其阻塞实现的核心,其他函数会在后续的学习中来补充理解完整。
scullpipe设备提供了轮询的功能
测试代码如下
#include <sys/types.h> #include <sys/stat.h> #include <stdio.h> #include <fcntl.h> #include <unistd.h> #include <sys/time.h> #define CLEAR 0x1 int main(int argc, char **argv) { int fd; char rd_ch[100]; fd_set rfds,wfds;//文件描述符集合 fd = open("/dev/my_scullpipe", O_RDONLY | O_NONBLOCK); if (fd == - 1){ printf("ERROR:open\n"); } else{ while(1) { FD_ZERO(&rfds);//先清空 FD_ZERO(&wfds); FD_SET(fd, &rfds);//将fd加入到读文件描述符集合 FD_SET(fd, &wfds);//将fd加入到写文件描述符集合 //检查文件描述符fd,select监视文件描述符集合rfds和wfds select(fd + 1, &rfds, &wfds, NULL, NULL); if(FD_ISSET(fd, &rfds)){//可读 printf("the device can be read\n"); } if(FD_ISSET(fd, &wfds)){//可写 printf("the device can be written\n"); } } } }