Codeforces--554C--Kyoya and Colored Balls(组合数学)

Kyoya and Colored Balls
Time Limit: 2000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u

Submit Status

Description

Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are labeled from 1 to k. Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he drew the last ball of color i before drawing the last ball of color i + 1 for all i from 1 to k - 1. Now he wonders how many different ways this can happen.

Input

The first line of input will have one integer k (1 ≤ k ≤ 1000) the number of colors.

Then, k lines will follow. The i-th line will contain ci, the number of balls of the i-th color (1 ≤ ci ≤ 1000).

The total number of balls doesn't exceed 1000.

Output

A single integer, the number of ways that Kyoya can draw the balls from the bag as described in the statement, modulo 1 000 000 007.

Sample Input

Input
3
2
2
1
Output
3
Input
4
1
2
3
4
Output
1680

Hint

In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are:

1 2 1 2 3
1 1 2 2 3
2 1 1 2 3

Source

Codeforces Round #309 (Div. 2)

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<iostream>
#define ll __int64
#define N 2010
#define M 1000000007
ll a[1010],C[2020][2020];
using namespace std;
void GetC()
{
    C[0][0] =C[1][0] = C[1][1] = 1;
    for(int i=2;i<N;i++)
	{
        C[i][0] = 1;C[i][i] = 1;
        for(int j=1;j<i;j++)
		{
            C[i][j] = (C[i-1][j-1] + C[i-1][j]) % M;
        }
    }
}
int main()
{
	int n,i,j,k;
	GetC();
	while(scanf("%d",&k)!=EOF)
	{
		ll sum=0;
		memset(a,0,sizeof(a));
		for(i=1;i<=k;i++)
		{
			scanf("%I64d",&a[i]);
			sum+=a[i];
		}
		ll num=1;
		for(i=k;i>=2;i--)
		{
			num=(num%M*C[sum-1][a[i]-1])%M;
			num%=M;
			sum-=a[i];
		}
		printf("%I64d\n",num%M);
	}
	return 0;
}


你可能感兴趣的:(Codeforces--554C--Kyoya and Colored Balls(组合数学))