Minimum Sum
Time Limit: 16000/8000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2311 Accepted Submission(s): 540
Problem Description
You are given N positive integers, denoted as x0, x1 ... xN-1. Then give you some intervals [l, r]. For each interval, you need to find a number x to make
as small as possible!
Input
The first line is an integer T (T <= 10), indicating the number of test cases. For each test case, an integer N (1 <= N <= 100,000) comes first. Then comes N positive integers x (1 <= x <= 1,000, 000,000) in the next line. Finally, comes an integer Q (1 <= Q <= 100,000), indicting there are Q queries. Each query consists of two integers l, r (0 <= l <= r < N), meaning the interval you should deal with.
Output
For the k-th test case, first output “Case #k:” in a separate line. Then output Q lines, each line is the minimum value of
. Output a blank line after every test case.
Sample Input
2
5
3 6 2 2 4
2
1 4
0 2
2
7 7
2
0 1
1 1
Sample Output
Case #1:
6
4
Case #2:
0
0
Author
standy
Source
2010 ACM-ICPC Multi-University Training Contest(4)——Host by UESTC
Recommend
zhengfeng
本题给定一个数的序列,然后给定若干查询区间,要找一个数使区间所有数与其绝对值的差最小,求这个最小绝对值的差。
若单单是找这样的数,最好的当然是平均值,但若是找平均值本题就不好做了,于是我们可以考虑用中位数代替平均值,可以用几何线段解释。而找中位数是划分树的本职。其实可以在找中位数的过程中求得这样的最小值。
我们可以开辟一个累加和数组sum[][],sum[dep][i]表示第dep层从1到i的累加和,ans为答案。当进入左子树查找时ans+=查询区间进入右子树的元素和;当进入右子树查询时ans-=查询区间进入左子树的元素和。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN=100000+100;
const int MAXPOW=20;//MAXPOW依据MAXN定大小
int tree[MAXPOW][MAXN];//tree[dep][i]表示第dep层第i个位置的值
__int64 sum[MAXPOW][MAXN];
int sorted[MAXN];//已经排序的数
int toleft[MAXPOW][MAXN];//toleft[dep][i]表示第dep层从1到i进入左边元素的个数
__int64 ans;
//构建深度为dep、区间为[l,r]的划分树
//时间复杂度为O(N*log(N))
void build(int l,int r,int dep)
{
int i;
int mid=(l+r)>>1;
int same=mid-l+1;//表示等于中间元素而且被进入左边的元素个数
for(i=l;i<=r;i++)
{
if(tree[dep][i]<sorted[mid])
same--;
sum[dep][i]+=sum[dep][i-1]+tree[dep][i];
}
if(l==r)return;
int lpos=l;
int rpos=mid+1;
for(i=l;i<=r;i++)
{
if(tree[dep][i]<sorted[mid])//比中间的元素小,进入左边
tree[dep+1][lpos++]=tree[dep][i];
else if(tree[dep][i]==sorted[mid]&&same>0)
{
tree[dep+1][lpos++]=tree[dep][i];
same--;
}
else //比中间的元素大,进入右边
tree[dep+1][rpos++]=tree[dep][i];
toleft[dep][i]=toleft[dep][l-1]+lpos-l;//从1到i放左边的元素个数
}
build(l,mid,dep+1);
build(mid+1,r,dep+1);
}
//查询小区间[l,r]内的第k大的元素,[L,R]是覆盖小区间的大区间
//时间复杂度为O(log(N))
int query(int L,int R,int l,int r,int dep,int k)
{
if(l==r)return tree[dep][l];
int mid=(L+R)>>1;
int cnt=toleft[dep][r]-toleft[dep][l-1];//[l,r]中位于左边的元素个数
if(cnt>=k)//进入左子树查询
{
int ee=r-L+1-(toleft[dep][r]-toleft[dep][L-1])+mid;
int ss=l-L-(toleft[dep][l-1]-toleft[dep][L-1])+mid;
ans+=sum[dep+1][ee]-sum[dep+1][ss];
//修改小区间的l=L+要查询的区间前进入左边的元素个数
int newl=L+toleft[dep][l-1]-toleft[dep][L-1];
//r=newl+查询区间会被放在左边的元素个数
int newr=newl+cnt-1;
return query(L,mid,newl,newr,dep+1,k);
}
else//进入右子树查询
{
int s=L+toleft[dep][l-1]-toleft[dep][L-1];
int e=s+cnt-1;
ans-=sum[dep+1][e]-sum[dep+1][s-1];
//修改小区间的r=r+要查询的区间后进入左边的元素个数
int newr=r+toleft[dep][R]-toleft[dep][r];
//l=r-要查询的区间进入右边的元素个数
int newl=newr-(r-l-cnt);
return query(mid+1,R,newl,newr,dep+1,k-cnt);
}
}
int main()
{
int n,m,i,l,r,k,tag=1;
int cas;
cin>>cas;
while(cas--)
{
scanf("%d",&n);
memset(sum,0,sizeof(sum));
memset(tree,0,sizeof(tree));//这个必须
for(i=1;i<=n;i++)//从1开始
{
scanf("%d",&tree[0][i]);
sorted[i]=tree[0][i];
}
sort(sorted+1,sorted+n+1);
build(1,n,0);
scanf("%d",&m);
printf("Case #%d:\n",tag++);
while(m--)
{
scanf("%d%d",&l,&r);
l++,r++;
k=(r-l)/2+1;
ans=0;
int tmp = query(1,n,l,r,0,k);
if((l+r)%2)ans-=tmp;
printf("%I64d\n",ans);
/*tmp=query(1,n,l,r,0,k);
for(i=l;i<=r;i++)
ans+=(__int64)abs(tree[0][i]-tmp);
printf("%I64d\n",ans);*/
}
printf("\n");
}
return 0;
}