那么当我们在使用散列函数后发现两个关键字key1≠key2,但是却有f(key1) = f(key2),即有冲突时,怎么办呢?我们可以从生活中找寻思路。
所谓的开放定址法就是一旦发生了冲突,就去寻找下一个空的散列地址,只要散列表足够大,空的散列地址总能找到,并将记录存入。
公式为:
fi(key) = (f(key)+di) MOD m (di=1,2,3,......,m-1)
比如说,我们的关键字集合为{12,67,56,16,25,37,22,29,15,47,48,34},表长为12。 我们用散列函数f(key) = key mod l2。
当计算前S个数{12,67,56,16,25}时,都是没有冲突的散列地址,直接存入:
计算key = 37时,发现f(37) = 1,此时就与25所在的位置冲突。
于是我们应用上面的公式f(37) = (f(37)+1) mod 12 = 2。于是将37存入下标为2的位置。这其实就是房子被人买了于是买下一间的作法:。
接下来22,29,15,47都没有冲突,正常的存入:
到了 key=48,我们计算得到f(48) = 0,与12所在的0位置冲突了,不要紧,我们f(48) = (f(48)+1) mod 12 = 1,此时又与25所在的位置冲突。于是f(48) = (f(48)+2) mod 12=2,还是冲突……一直到 f(48) = (f(48)+6) mod 12 = 6时,才有空位,机不可失,赶快存入:
我们把这种解决冲突的开放定址法称为线性探测法。
从这个例子我们也看到,我们在解决冲突的时候,还会碰到如48和37这种本来都不是同义词却需要争夺一个地址的情况,我们称这种现象为堆积。很显然,堆积的出现,使得我们需要不断处理冲突,无论是存入还是査找效率都会大大降低。
考虑深一步,如果发生这样的情况,当最后一个key=34,f(key)=10,与22所在的位置冲突,可是22后面没有空位置了,反而它的前面有一个空位置,尽管可以 不断地求余数后得到结果,但效率很差。
因此我们可以改进di = 12, -12, 22, -22,……, q2, -q2 (q <= m/2),这样就等于是可以双向寻找到可能的空位置。
对于34来说,我 们取di即可找到空位置了。另外增加平方运算的目的是为了不让关键字都聚集在 某一块区域。我们称这种方法为二次探测法。
fi(key) = (f(key)+di) MOD m (di = 12, -12, 22, -22,……, q2, -q2, q <= m/2)
还有一种方法是,在冲突时,对于位移量 di 采用随机函数计算得到,我们称之为随机探测法。
此时一定会有人问,既然是随机,那么查找的时候不也随机生成办吗?如何可以获得相同的地址呢?这是个问题。这里的随机其实是伪随机数。
伪随机数是说,如果我们设置随机种子相同,则不断调用随机函数可以生成不会重复的数列,我们在査找时,用同样的随机种子,它每次得到的数列是相同的,相同的 di 当然可以得到相同的散列地址。
fi(key) = (f(key)+di) MOD m (di是一个随机数列)
总之,开放定址法只要在散列表未填满时,总是能找到不发生冲突的地址,是我们常用的解决冲突的办法。