HDOJ 4005 The war


题意:给一个无向图,敌人还可以再随机建一条边,而你可以拆掉一条边并产生一定的花费。问至少要多少花费才能保证拆掉一条边之后图不联通。


tarjan缩点。。。。如果最大度<=2。。。则在加一条边后构成一整个强连通分量是无解的

否则找最小的某个节点的到子节点的第3小边(第1小,和第2小的边是可能被连到一起的),具体做法:重新构图的时候找到最小的边,然后从最小的边的两个端点分别dfs找第二小的边。。。


注意可能出现重边,建图的时候要给每个边加上编号,方便判断。。。


The war

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 1909    Accepted Submission(s): 415


Problem Description
In the war, the intelligence about the enemy is very important. Now, our troop has mastered the situation of the enemy's war zones, and known that these war zones can communicate to each other directly or indirectly through the network. We also know the enemy is going to build a new communication line to strengthen their communication network. Our task is to destroy their communication network, so that some of their war zones can't communicate. Each line has its "cost of destroy". If we want to destroy a line, we must spend the "cost of destroy" of this line. We want to finish this task using the least cost, but our enemy is very clever. Now, we know the network they have already built, but we know nothing about the new line which our enemy is going to build. In this condition, your task is to find the minimum cost that no matter where our enemy builds the new line, you can destroy it using the fixed money. Please give the minimum cost. For efficiency, we can only destroy one communication line.
 

Input
The input contains several cases. For each cases, the first line contains two positive integers n, m (1<=n<=10000, 0<=m<=100000) standing for the number of the enemy's war zones (numbered from 1 to n), and the number of lines that our enemy has already build. Then m lines follow. For each line there are three positive integer a, b, c (1<=a, b<=n, 1<=c<=100000), meaning between war zone A and war zone B there is a communication line with the "cost of destroy " c.
 

Output
For each case, if the task can be finished output the minimum cost, or output ‐1.
 

Sample Input
   
   
   
   
3 2 1 2 1 2 3 2 4 3 1 2 1 1 3 2 1 4 3
 

Sample Output
   
   
   
   
-1 3
Hint
For the second sample input: our enemy may build line 2 to 3, 2 to 4, 3 to 4. If they build line 2 to 3, we will destroy line 1 to 4, cost 3. If they build line 2 to 4, we will destroy line 1 to 3, cost 2. If they build line 3 to 4, we will destroy line 1 to 2, cost 1. So, if we want to make sure that we can destroy successfully, the minimum cost is 3.
 

Source
The 36th ACM/ICPC Asia Regional Dalian Site —— Online Contest
 


#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int INF=0x3f3f3f3f;
const int maxn2=200200;
const int maxn1=10100;

int n,m;

struct Edge
{
    int from,to,next,val,id;
}edge[maxn2],edge2[maxn2];

int Size,Adj[maxn1],Size2,Adj2[maxn1];
int degree[maxn1],dp[maxn1][2],ANS;
bool use[maxn2];

void init()
{
    Size=0; memset(Adj,-1,sizeof(Adj));
}

void Add_Edge(int u,int v,int cost,int d)
{
    edge[Size].to=v;
    edge[Size].from=u;
    edge[Size].id=d;
    edge[Size].val=cost;
    edge[Size].next=Adj[u];
    Adj[u]=Size++;
}

void init2()
{
    Size2=0; memset(Adj2,-1,sizeof(Adj2));
}

void Add_Edge2(int u,int v,int cost)
{
    edge2[Size2].to=v;
    edge2[Size2].from=u;
    edge2[Size2].val=cost;
    edge2[Size2].next=Adj2[u];
    Adj2[u]=Size2++;
}

/****************tarjan**********************/

int Low[maxn1],DFN[maxn1],Stack[maxn1],Belong[maxn1];
int Index,top,scc;

bool Instack[maxn1];

void tarjan(int u,int fa)
{
    int v;
    Low[u]=DFN[u]=++Index;
    Stack[top++]=u; Instack[u]=true;
    for(int i=Adj[u];~i;i=edge[i].next)
    {
        v=edge[i].to;
        if(v==fa&&use[edge[i].id]) continue;
        use[edge[i].id]=1;
        if(!DFN[v])
        {
            tarjan(v,u);
            Low[u]=min(Low[u],Low[v]);
        }
        if(Instack[v])
        {
            Low[u]=min(Low[u],DFN[v]);
        }
    }

    if(Low[u]==DFN[u])
    {
        scc++;
        do
        {
            v=Stack[--top];
            Instack[v]=false;
            Belong[v]=scc;
        }while(v!=u);
    }
}

void scc_solve(int n)
{
    memset(DFN,0,sizeof(DFN));
    memset(Instack,false,sizeof(Instack));

    Index=scc=top=0;

    memset(use,0,sizeof(use));
    for(int i=1;i<=n;i++) if(!DFN[i]) tarjan(i,i);
}

int dfs(int u,int f)
{

    for(int i=Adj2[u];~i;i=edge2[i].next)
    {
        int v=edge2[i].to;
        if(v==f) continue;
        int mini=edge2[i].val;
        mini=min(mini,dfs(v,u));
        if(mini<=dp[u][0])
        {
            dp[u][1]=dp[u][0];
            dp[u][0]=mini;
        }
        else if(mini<=dp[u][1])
        {
            dp[u][1]=mini;
        }
        ANS=min(ANS,dp[u][1]);
    }
    return dp[u][0];
}

int main()
{

    while(scanf("%d%d",&n,&m)!=EOF)
    {
        init(); init2();
        for(int i=0;i<m;i++)
        {
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            Add_Edge(a,b,c,i);
            Add_Edge(b,a,c,i);
        }

        scc_solve(n);

        int minedge=-1,mark=INF,maxd=-INF;
        memset(degree,0,sizeof(degree));

        for(int i=0;i<Size;i++)
        {
            int u=edge[i].from;
            int v=edge[i].to;
            int c=edge[i].val;
            if(Belong[u]!=Belong[v])
            {
                Add_Edge2(Belong[u],Belong[v],c);
                degree[Belong[u]]++,degree[Belong[v]]++;
                maxd=max(maxd,max(degree[Belong[u]],degree[Belong[v]]));
                if(mark>c)
                {
                    mark=c;
                    minedge=i;
                }
            }
        }

        if(maxd<=4)
        {
            puts("-1"); continue;
        }

        memset(dp,63,sizeof(dp)); ANS=INF;

        dfs(Belong[edge[minedge].from],Belong[edge[minedge].to]);
        dfs(Belong[edge[minedge].to],Belong[edge[minedge].from]);

        printf("%d\n",ANS);

    }
    return 0;
}



你可能感兴趣的:(HDOJ 4005 The war)